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Recognition of peripheral objects is fundamentally lim-
ited by their spacing, not just by the visibility of their 
features. A target that can be easily identified when 
presented alone becomes unrecognizable when pre-
sented alongside nearby flankers (i.e., crowded; Bouma, 
1970; Levi, 2008; Pelli & Tillman, 2008). This breakdown 
in object recognition (Pelli, Palomares, & Majaj, 2004) 
corresponds to the increase in positional uncertainty in 
the periphery resulting from larger receptive fields 
(Freeman & Simoncelli, 2011; Levi & Klein, 1986). A 
widely accepted model of object recognition assumes 
two stages: feature representation and feature binding 
into an object (reviewed by Di Lollo, 2012). However, 
whether and how crowding reflects interference in 
either one or both of these stages are still unclear (see 
reviews by Pelli & Tillman, 2008; Whitney & Levi, 2011).

Recent studies have posited that crowding occurs either 
at an early visual stage, such as V1 or V2 (Freeman & 
Simoncelli, 2011; Nandy & Tjan, 2012), or at multiple stages 
of visual processing and object representation (Kimchi & 

Pirkner, 2015; Manassi & Whitney, 2018). Proposed models 
explain crowding as reflecting either substitution of objects 
(Ester, Klee, & Awh, 2014; Ester, Zilber, & Serences, 2015; 
Huckauf & Heller, 2014; Strasburger, Harvey, & Rentschler, 
1991) or pooling of features (Freeman & Simoncelli, 2011; 
Greenwood, Bex, & Dakin, 2009; Harrison & Bex, 2015; 
Keshvari & Rosenholtz, 2016; Parkes, Lund, Angelucci, 
Solomon, & Morgan, 2001; van den Berg, Roerdink, & 
Cornelissen, 2010). Substitution models predict confusion 
errors, such as misreporting flanker items instead of the 
target (Ester et al., 2014; Ester et al., 2015). Pooling models 
typically predict feature-averaging errors, such as reporting 
a combination of target and flanker features (Parkes et al., 
2001), but recent pooling models have attempted to 
explain both averaging and confusion errors (Freeman & 
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Simoncelli, 2011; Harrison & Bex, 2015; Keshvari & 
Rosenholtz, 2016).

Several recent studies have suggested that a general 
mechanism can explain crowding in various feature 
dimensions (Greenwood, Bex, & Dakin, 2012; Keshvari 
& Rosenholtz, 2016; Põder & Wagemans, 2007; van den 
Berg, Roerdink, & Cornelissen, 2007). Moreover, as 
stated in an authoritative and widely cited review, “most 
studies on crowding implicitly (if not explicitly) argue 
that crowding is a unitary phenomenon, occurring at a 
single circumscribed level of visual processing, or per-
haps in a particular visual area” (Whitney & Levi, 2011, 
p. 165). Therefore, the proposed model presumably 
predicts the same type of crowding errors regardless 
of the types of feature dimensions, such as orientation, 
color, and spatial frequency (SF). However, whether 
crowding errors are qualitatively the same across dif-
ferent feature dimensions and their conjunctions (i.e., 
feature binding) is unknown. Most studies have inves-
tigated crowding errors within a particular dimension 
(e.g., orientation; Ester et al., 2015; Greenwood, Bex, 
& Dakin, 2010; Harrison & Bex, 2015; Parkes et  al., 
2001; Scolari, Kohnen, Barton, & Awh, 2007; van den 
Berg et al., 2010; Yashar, Chen, & Carrasco, 2015), and 
the few investigations of errors within various dimen-
sions could not distinguish averaging and substitution 
errors, nor could they test for qualitative differences 
across dimensions (Greenwood et al., 2012; Põder & 
Wagemans, 2007; van den Berg et al., 2007). Thus, it is 
still unknown how each of the basic feature dimensions 
behaves under crowding and whether they behave 
interdependently or independently from each other.

In this study, we had two main goals. First, we tested 
the assumption that the same crowding mechanism 
applies to different features (van den Berg et al., 2007; 
Whitney & Levi, 2011). For orientation, SF, and color, we 
investigated the contribution of each flanker to crowd-
ing. Second, we investigated the processing stage at 
which crowding occurs: before or after features are 
bound into an object. To do so, we employed a feature-
estimation technique that enabled us to simultaneously 
characterize the pattern of crowding errors within and 
between feature dimensions. Thus, we were able to 
quantitatively assess not only the accuracy of feature 
perception under crowding conditions but also the accu-
racy of feature binding.

Experiment 1: Orientation and Color

Observers performed an orientation- and color-estimation 
task of a peripheral (7° of eccentricity) colored T-shaped 
target (Fig. 1a). The orientation and color of the target 
were each independently selected at random from two 
circular parameter spaces. Target orientation was ran-
domly selected from 180 values evenly distributed 

between 1° and 360°. Target color was randomly selected 
out of 180 values evenly distributed along a circle in the 
Derrington, Krauskopf, and Lennie (DKL) color space 
(Derrington, Krauskopf, & Lennie, 1984). Stimuli color 
and background were equiluminant. In Phase 1, we 
tested the appropriateness of the estimation task with the 
equiluminant DKL colors. The results showed a linear 
relation between estimation and target color values, rul-
ing out the possibility that the task was mediated by color 
categories (e.g., red, blue; see Fig. S1 in the Supplemental 
Material available online). In Phase 2, the target could be 
either alone (target-alone condition) or flanked by two 
similar T-shaped items (flanker conditions). Target and 
flankers were radially aligned on the horizontal meridian 
axis on either the left or right hemifield. The center-to-
center distance between the target and the flankers was 
2.1°, within the region of radial crowding (Bouma, 1970). 
Flankers’ orientation and color were selected out of the 
same circular parameter spaces as the target but differed 
in values from those of the target. Each flanker had a 
unique relation to the target in both parameter spaces 
(negative or positive). This design enabled us to track the 
direction and distance of estimation errors in both feature 
dimensions relative to each flanker. We analyzed the error 
distributions (the estimated value – the true target value) 
of each feature dimension by fitting probabilistic models.

Method

Observers.  Fourteen undergraduate and graduate stu-
dents from New York University participated in this 
experiment (5 female; age: range = 18–29 years, M = 
21.00, SD = 3.28). On the basis of an a priori power 
analysis using effect sizes from previous studies (Ester 
et al., 2014), we estimated that a sample size of 12 observ-
ers was required to detect a crowding effect with 95% 
power, given a .05 significance criterion. We collected 
data from 2 more observers in anticipation of possible 
dropouts or equipment failure. All observers were naive 
to the purposes of the experiment. All observers were 
checked for normal color vision and reported having 
normal or corrected-to-normal visual acuity. Written 
informed consent was obtained from all observers before 
the experiment. The University Committee on Activities 
Involving Human Subjects at New York University 
approved the experimental procedures.

Apparatus.  Stimuli were programmed in MATLAB (The 
MathWorks, Natick, MA) with the Psychophysics Toolbox 
extensions (Kleiner, Brainard, & Pelli, 2007) and presented 
on a gamma-corrected 21-in. CRT monitor (Sony GDM-
5402; 1,280 × 960 resolution and 85-Hz refresh rate) con-
nected to an iMac. A chin rest was used at a viewing 
distance of 57 cm. Colors and luminance were calibrated 
using a SpectraScan Spectroradiometer PR-670 (Photo 
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Research, Syracuse, NY) spectrometer. Eye movements 
were monitored and recorded by an EyeLink 1000 (SR 
Research, Kanata, Ontario, Canada) infrared eye tracker. 
Observers used the mouse to generate responses.

Stimuli and procedure.  Figure 1a illustrates a trial 
sequence. Each trial began with a fixation mark—a cen-
tered black plus sign subtending 0.5°—along with two 

dots subtending 0.05° in radius. The dots were presented 
on the horizontal meridian, one in the left hemifield and 
the other in the right hemifield. Each dot was centered at 
an eccentricity of 7° and indicated the two possible target 
locations. Following observer fixation (for a random dura-
tion between 300 and 800 ms), the stimulus display 
appeared for 75 ms. In the stimulus display, the target was 
a T-shaped item, subtending 1.6° × 1.6° and drawn with a 
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Fig. 1.  Orientation- and color-estimation tasks, stimuli, conditions, and results in Experiment 1. On each trial (a), observers viewed a 
T-shaped target and then had to report the target’s color and orientation. The target could appear alone (target-alone condition), flanked 
by two symmetrical T-shaped items (±60 and ±90 flanker conditions), or flanked by two asymmetrical T-shaped items (60/–90 flanker 
condition). In Experiment 1, the order of reports (orientation and color) alternated across blocks and was counterbalanced for each 
observer. In the Supplementary Experiment (see the Supplemental Material available online), observers reported color and orientation 
simultaneously. The distribution of errors relative to target feature values is shown separately for (b) the target-alone condition and  
(c) each of the flanker conditions. Error distributions are plotted as a function of the deviation between the estimation report and the 
target’s feature value for orientation (bars above heat map), color (bars to the right of heat map), and their conjunction (heat map). The 
axes are in units of standard deviation (std) of the error distribution in target-alone trials. Data from asymmetrical flankers were aligned 
to 60°/–90° (as pictured) during analysis. Solid lines indicate the response probabilities predicted by the standard model in the target-
alone condition and by the standard misreport model in the flanker conditions.
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0.3° stroke. The target was presented on the horizontal 
meridian in either the left or right (randomly selected) hemi-
fields and was centered at 7° eccentricity. The orientation 
and color of the target were each independently selected at 
random from two circular parameter spaces. Target orienta-
tion was randomly selected out of 180 values evenly distrib-
uted between 1° and 360°. Target color was randomly 
selected out of 180 values evenly distributed along a circle 
in the DKL color space (Derrington et al., 1984; see Supple-
mentary Method 1 in the Supplemental Material). Stimuli 
color and background were equiluminant (56 cd/m2).

The target could be either alone (target-alone condi-
tion) or flanked by two similar T-shaped items (flanker 
conditions) centered on the horizontal meridian to the 
left and to the right of the target (each 2.1° of center-
to-center distance from the target). To monitor eye fixa-
tion and stimulus eccentricity, we used on-line eye 
tracking (see the Apparatus section). The trials in which 
the observer broke fixation (> 1.5° from fixation) were 
terminated and rerun at the end of the block.

The stimulus display was followed by a blank inter-
val of 500 ms, which was then followed by the response 
displays, which remained on screen until the observer 
completed both responses. The response displays 
included an orientation circle (a black circle 0.08° thick 
with an inner radius of 3.8° around the center of the 
screen) along with a color wheel (1.5° thick with an 
inner radius of 2.25°) containing the 180 colors. Observ-
ers were asked to estimate the target orientation by 
pointing and clicking the mouse cursor at a position 
on the orientation wheel and to estimate the target 
color by pointing and clicking the mouse cursor at a 
position on the color wheel. During report, a visual 
feedback of the selected feature was presented at the 
location of the target. A letter at fixation (either an O 
for orientation first or a C for color first) indicated 
report order, which was counterbalanced across blocks.

Design. 
Phase 1.  To test the appropriateness of the estima-

tion task with the equiluminant DKL colors, we tested 
the target-alone condition. Figure S1 illustrates the color-
estimation values as a function of target color values for 
the selected eccentricity. The results showed a linear rela-
tion between estimation and target color values, ruling 
out the possibility that the task was mediated by color 
categories (e.g., red, blue).

Phase 2.  There were four conditions: three flanker 
conditions (±60, 60/–90, and ±90; Fig. 1c) and the target-
alone condition (Fig. 1b). Flankers’ orientation and color 
differed from those of the target by either ±60° or ±90° 
in orientation space and DKL color space. Each flanker 
had the same absolute target–flanker difference in both 

feature dimensions. Within each feature dimension, one 
flanker had a positive target–flanker difference and the 
other a negative target–flanker difference (randomly 
selected); each flanker had a unique relation to the target 
(negative or positive) in both feature dimensions. This 
design enabled us to track the direction of estimation 
errors related to each flanker in both feature dimensions. 
The three flanker conditions were based on the com-
binations of the target–flanker differences with the two 
flankers: (a) 60° and –60°, (b) 90° and –90°, and (c) 60° 
and –90° or 90° and –60°, which were labeled (a) ±60, 
(b) ±90, and (c) 60/–90, respectively. Each condition had 
200 trials (800 trials overall). Each observer completed 10 
blocks of 80 trials over two 50-min sessions (5 blocks per 
session). In each block, there were 20 trials from each of 
the four conditions. Response-display order was coun-
terbalanced across blocks. The experiment began with 
an 80-trial practice block. Observers were encouraged to 
take a short rest between blocks.

Models and analyses.  We analyzed the error distribu-
tions by fitting probabilistic-mixture models, which were 
developed from the standard model and the standard-
with-misreporting model (Bays, Catalao, & Husain, 2009): 
For each trial, we calculated the estimation error for ori-
entation and color by subtracting the estimation value 
from the true value of the target. In the flanker condi-
tions, we aligned the data so that across feature dimen-
sions, one flanker was consistently positive and the other 
was consistently negative. In the 60/–90 flanker condi-
tion, we aligned all data to be 60° and –90°. These align-
ments enabled us to track the effect of each individual 
flanker on the error distribution of each feature dimen-
sion separately and in conjunction with the other feature 
dimension. We compared five models.

The standard mixture model (Equation 1) uses a von 
Mises (circular) distribution to describe the probability 
density of the pooling estimation of the target’s feature 
and a uniform component to reflect the guessing in 
estimation. The model has two free parameters:

	 p f
n

( ) ( ) ( ) ( ),θ θ− γ γσ= +1
1

	 (1)

where θ is the value of the estimation error, γ is the 
proportion of trials in which observers are randomly 
guessing (guessing rate), f(θ)σ is the von Mises distribu-
tion with a standard deviation σ (variability; the mean 
was set to zero), and n is the total number of possible 
values for the target’s feature.

The bias mixture model (Equation 2) has three free 
parameters. In addition to the variability and guessing 
rate, this model includes a free parameter for the mean 
(µ) of the error distribution:
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	 p f
n

( ) ( ) ( ) ( ).θ θ− γ γµ σ= +1
1

, 	 (2)

The standard misreport model (Equation 3) has three 
free parameters. The model adds a misreporting com-
ponent to the standard mixture model, which describes 
the probability of reporting one of the flankers to be 
the target:

	 p f
n m

f ii

m
( ) ( ) ( ) ( ) ,*θ γ θ γ θ− − β βσ σ= + 






 + ∑1

1 1
	 (3)

where β is the probability of reporting a flanker as the 
target, m is the total number of nontarget items (two 
in the present study), and θi

*  is the error to the feature 
of the ith flanker. Notice that f (θ), the von Mises dis-
tribution of the estimation errors, here describes the 
distribution when the observer correctly estimated the 
target’s feature; thus, its mean is zero. In contrast, for 
f i( )*θ , the distribution of estimating one flanker, the 
mean would be the feature distance of the corresponding 
flanker to that of the target. The variability of the distri-
butions for each stimulus was assumed to be the same.

The bias misreport model (Equation 4) has four free 
parameters. In addition to the parameters in the standard 
misreport model, there is a free parameter for the mean 
(µ) of the distribution of estimating the target’s feature 
to better account for possible pooling and substitution:

	 p f
n m

f ii

m
( ) ( ) ( ) ( ) ,*θ γ θ γ θ− − β βµ,σ σ= + 






 + ∑1

1 1
� (4)

The educated-guess model (Equation 5) has four free 
parameters. The model adds a misreporting component 
of the guessed stimuli other than the stimuli presented 
to the standard misreport model. This misreporting 
component is similar to the misreporting component 
of the flankers but has a different probability:

	

p f
n

m
f

k
f

F G

F ii

m

G i
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( ) ( )* **

θ γ θ γ

θ θ

− − β − β

β β

σ

σ
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




 +

+∑

1
1

1 1
σσi

k∑ ,

	 (5)

where βF is the probability of misreporting a flanker as 
the target, and βG is the probability of misreporting a 
guessed feature other than the flankers presented. This 
model follows the assumption that the observer may 
have the information about one feature and then guess 
the feature of the target on the basis of all possible 

target–flanker distances. This educated guess could 
result in misreporting one flanker as the target or mis-
reporting features not presented in the corresponding 
trial. For example, there are four possible target–flanker 
distances: –90°, –60°, 60°, and 90°. In a 60°/–60° trial, 
for each detected feature, there are five possible feature 
values (including the stimulus itself) that could be the 
possible target; therefore, there will be two flankers 
(–60°, 60°; m = 2) with the misreporting probability βF, 
and 10 not-presented guessed stimuli (some of them 
are overlapped, and the nonoverlapping feature values 
are –150, –120, –90, –30, 30, 90, 120, and 150; k = 10) 
with the misreporting probability βG.

We used the MemToolbox (Suchow, Brady, Fougnie, 
& Alvarez, 2013) to fit the models and compared the 
Akaike information criterion with correction (AICc) to 
assess model fits.

Results

Misreporting of orientations or colors.  For each fea-
ture dimension, the estimation error was defined as the 
deviation between the reported and the actual feature 
value of the target (Figs. 1b and 1c). We analyzed the 
error distributions by fitting five probabilistic-mixture 
models to the individual data (see the Method section). 
All models included a von Mises (circular) distribution to 
describe the probability density of precision errors for the 
target’s feature as well as a uniform component to capture 
the guessing in estimation. We compared these basic-mix-
ture models (the standard and bias models), models that 
also include a misreports component to describe the 
probability of reporting one of the flankers to be the tar-
get (the standard misreport and bias misreport models), 
and a model that also includes an educated-guess compo-
nent to describe the proportion of observers who guessed 
the target on the basis of flankers’ values (the educated-
guess model). We compared models by calculating AICc 
values for the individual model fits (Fig. 2). Table S1 in 
the Supplemental Material shows fitted model parameters 
in each condition and dimension.

To compare crowding for orientation and color, we 
converted each feature-dimension value with units of 
variability (σ) of the error distribution in target-alone 
trials (i.e., angle units/σ in target alone) so that in each 
feature dimension, target–flanker distance was pre-
sented in relation to the observer’s precision in the 
target-alone trials. These standardized units of target–
flanker distance (±60° = ±4.60° and ±90° = ±6.90° for 
orientation; ±60° = ±3.43° and ±90° = ±5.15° for color) 
confirmed that the effect of flanker interference was 
comparable across feature dimensions (Figs. 1b and 1c).
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On target-alone trials, the error distributions for both 
feature dimensions were well described by a von Mises 
distribution centered on the target value with an added 
nonzero uniform distribution (γ) for both orientation 
and color (Fig. 1b), t(13) = 3.03, p = .01, Cohen’s d = 
0.81, and t(13) = 2.98, p = .011, Cohen’s d = 0.80, respec-
tively, indicating that a small yet significant proportion 
of the responses was statistically unrelated to the target 
(i.e., guessing).

For both orientation and color, models with misre-
ported components outperformed the models without 
the misreported component. That is, a significant pro-
portion of errors was centered on the value of each of 
the two flankers, impairing the fit of a single von Mises 
distribution to the data. Importantly, adding an educated-
guess component to the misreport model did not improve 
the fit, indicating that observers were unaffected by the 
partial correlation between target and flanker values. In 
the flanker conditions, the guessing rate was higher for 
both orientation and color, ts(13) > 2.19, ps < .05 
(Tables S1 and S4 in the Supplemental Material). The 
misreporting rate (β) was larger than zero in all flanker 
conditions, ts(13) > 5.22, ps < .001. The variability (σ) 
of errors centered on the target increased significantly 
relative to the target-alone condition, ts(13) > 3.32,  
ps < .01, indicating that crowding led to reduced preci-
sion and increased the guessing rate and misreporting 
errors.

Next, we compared misreporting rates between orien-
tation and color. Orientations were misreported more 
than color—orientation: averaged β = 0.27, SE = 0.03; 
color: averaged β = 0.086, SE = 0.01; t(13) = 7.64,  
p < .001, Cohen’s d = 2.04—indicating a larger crowding 
effect for estimation of orientation than for estimation of 
color.

Observers misreport orientations independently 
from color.  To assess whether orientation and color 
errors occur before or after orientation and color are 
bound, we used trial-by-trial correlation between orienta-
tion errors and color errors to test the interdependency of 
crowding errors across feature dimensions. The joint dis-
tributions in each condition are presented in Figures 
1b and 1c. In the target-alone condition, only 4 out of 
14 observers showed a significant Pearson correlation 
between orientation and color errors (overall mean r = 
.06, SE = .04). In the flanker conditions (all three con-
ditions collapsed), only 3 observers showed a signifi-
cant correlation (overall mean r = .03, SE = .02). These 
findings show that orientation and color estimation 
were predominantly uncorrelated.

In both feature dimensions, the nature of errors was 
largely the same: Observers reported the orientation or 
color of a flanker instead of that of the target (misre-
porting errors). Note that it is unlikely that orientation 
errors were the result of combining target and flanker 
T-shape parts (e.g., combining target “stem” with 
flanker “hat”) because such combinations would lead 
to reporting a vast range of orientations that would be 
reflected by an increase in the uniform distribution 
rather than by misreporting errors. The misreporting 
errors in color could not be explained by optical blur 
because such blur predicts averaging errors. Impor-
tantly, orientation and color misreporting were inde-
pendent from each other, suggesting that orientation 
and color are unbound under crowding conditions.

An alternative explanation is that the separate 
reports for color and orientation encouraged observers 
to separately encode color and orientation. Hence, the 
uncorrelated errors across dimensions could have been 
due to response strategy rather than an unbounded 
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perceptual representation of features. To rule out this 
alternative explanation, we conducted a control experi-
ment in which observers reported both orientation and 
color of the target with a single response. This experi-
ment yielded converging results (see Supplementary 
Experiment and Fig. S2 in the Supplemental Material): 
Uncorrelated trial-by-trial errors were maintained even 
when observers simultaneously reported both dimen-
sions. Taken together, these results show that orienta-
tion and color crowding errors occur before features 
are bound into an object.

Experiment 2: Orientation and SF

In this experiment, we tested whether the pattern of 
results obtained in Experiment 1 would also emerge 
with different stimuli and feature dimensions. Observers 
viewed sinusoidal gratings (Gabor patches) and esti-
mated the target’s SF and orientation (Fig. 3a). These 
two dimensions are jointly coded by individual neurons 
in V1 (De Valois, Albrecht, & Thorell, 1982); thus, we 
hypothesized that instead of being independent, crowd-
ing errors may be interdependent.

Method

Observers.  Fourteen undergraduate students from New 
York University participated in this experiment (12 female; 
age: range = 18–21 years, M = 19.43 years, SD = 0.85). All 
observers were naive to the purposes of the experiment, 
and all reported having normal or corrected-to-normal 
visual acuity. Written informed consent was obtained from 
all observers before the experiment. The University Com-
mittee on Activities Involving Human Subjects at New 
York University approved the experimental procedures.

Apparatus, stimuli, procedure, and design.  The se- 
quence of events within a trial and sample stimulus dis-
plays are presented in Figure 3a. The apparatus, stimuli, 
procedure, and design were the same as in Experiment 1, 
except for the following changes. Target and flankers were 

sinusoidal gratings (Gabor patches) with a 2-D Gaussian 
spatial envelope (SD = 0.325°, 85% contrast). The orienta-
tion and SF of the target were each randomly and inde-
pendently selected from two parameter spaces. The 
viewing distance was 91 cm. Target and flankers’ center-to-
center distance was 2.15°. The orientation parameter 
space ranged from 1° to 180° of visual angle. Stimulus 
display duration was 200 ms.

Phase 1.  To determine the SF values of the estimation 
task, we tested the target-alone condition with different 
SF values, linearly spaced. On the basis of this test, we 
set the SF parameter space to correspond to the range of 
1 to 5 cycles per degree (cpd). Because SF discriminabil-
ity varies across SF values (Caelli, Brettel, Rentschler, & 
Hilz, 1983), we scaled the 180 unit steps of SF that were 
used in Phase 2 according to the variation in the estima-
tion task of SF values in Phase 1. To do so, we fitted 
an exponential function to the standard deviation of the 
estimation data for each SF value in Phase 1 (Fig. S3 in 
the Supplemental Material).

Phase 2.  Flankers’ orientation and SF differed from 
the target by either ±40 or ±70 units of orientation (°) 
and SF (see Phase 1). Each flanker had the same abso-
lute target–flanker difference in both feature dimensions. 
Within each feature dimension, one flanker had a positive 
target–flanker difference and the other a negative target–
flanker difference (randomly selected); each flanker had 
a unique relation to the target (negative or positive) in 
both feature dimensions. Target–flanker distance within 
the parameter space was (a) 40°/–40°, (b) 70°/–70°, and 
(c) 40°/–70° or 70°/–40°, which were labeled (a) ±40,  
(b) ±70, and (c) 40/–70, respectively.

In all trials, the target orientation was randomly 
selected from the range of 1° to 180° with a step size of 
2°. In target-alone trials, the target SF was randomly 
selected out of the 180 steps, as determined in Phase 1. 
However, because SF is not a circular space, in the crowd-
ing display, flankers’ SF values restricted the range of 
target SF values; the target SF ranged from 41 to 140 SF 

Fig. 3.  Stimuli, results, and simulated data of Experiment 2 and comparison with Experiment 1. On each trial in Experiment 2 (a), observers 
viewed a target Gabor patch and then had to separately report its orientation and spatial frequency. The target could appear alone (target-
alone condition), flanked by two symmetrical Gabors (±40 and ±70 flanker conditions), or flanked by two asymmetrical Gabors (40/–70 
flanker condition). The order of feature report (SF and orientation) alternated across blocks and was counterbalanced for each observer. The 
distribution of errors relative to target feature values in Experiment 2 is shown (b) for the observed data and (c) for the simulated data (by 
sampling 100,000 trials per condition) from the joint-coding model, separately for each condition. Error distributions are plotted as a function 
of the deviation between estimation report and the target’s feature value for orientation (bars above heat map), SF (bars to the right of heat 
map), and their conjunction (heat map). The axes are in units of standard deviation (std) of the error distribution in target-alone trials. Solid 
lines are model fits for orientation (standard misreport model) and SF (bias model). In (d) and (e), comparisons of misreporting rates (top 
panels) and standard deviations (bottom panels) in consistent and inconsistent trials are shown. Results are shown for (d) observed data in 
the orientation (Ori), color, and SF trials in Experiments 1 and 2 and (e) simulated data for the orientation and SF trials of the joint-coding 
model and independent-distribution model. Error bars show +1 SEM (Morey, 2008). Asterisks in (d) indicate significant differences between 
trial types (p < .01).
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steps (1.82–4.07 cpd) in the ±40 flanker condition, 71 to 
110 SF steps (2.49–3.39 cpd) in the ±70 flanker condition, 
and 41 to 110 SF steps (1.82–3.39 cpd) and 71 to 140 SF 
steps (2.49–4.07 cpd) in the 40/–70 flanker condition.

There were two response displays. In the orientation 
response display, observers had to estimate the target 
orientation by pointing and clicking the mouse cursor 
at a position on the orientation wheel. In the SF 
response display, observers estimated SF by pointing 
and clicking the mouse cursor on a centered horizontal 
line (0.08°-thick two-directional arrow 11.2° in length). 
A minus sign on one side and a plus sign on the other 
indicated the direction of SF increase. Because SF is 
not circular, we extended the range of the SF response 
(0.48–7.35 cpd) beyond that of the target (1–5 cpd).

Models and analyses.  Because SF is not circular, we 
used a Gaussian distribution when fitting SF to the mix-
ture models and von Mises distribution when fitting ori-
entation to the mixture models. Because we had to 
restrict the range of the target SF in the flanker condi-
tions, we equated the range of target SF when comparing 
the SF flanker and target-alone conditions.

Results

Misreporting of orientations but averaging of SFs.  
Error distributions differed between orientation and SF. 
Whereas orientation errors were best described by misre-
porting models, SF errors were best described by a single 
Gaussian function with an added uniform distribution 
(bias models; Fig. 2). In both feature dimensions, the best-
fitting models outperformed the educated-guess model. 
Table S1 shows parameters of the best-fitting model for 
each condition and dimension.

Orientation.  As in Experiment 1, significant propor-
tions of orientation error in the flanker conditions were 
due to misreporting, ts(13) > 3.6, ps < .004, and guess-
ing, ts(13) > 3.6, ps < .003 (Fig. 3b; Table S4 includes 
all statistical values). But the variability of the von Mises 
distribution between flanker and target-alone conditions 
was equivalent, ts < 2.1, ps > .06. These results indicate 
that orientation-estimation errors were due to increases 
in the guessing and misreporting rates.

Spatial frequency.  The variance of SF errors was larger 
in the flanker conditions than in the target-alone condi-
tion (Tables S1 and S4), ts(13) > 3.9, ps < .002. The pro-
portion of guesses did not increase compared with the 
target-alone condition, ts(13) < 2.1, ps > .05. When we 
tested the mean (µ) of the Gaussian distribution (i.e., the 
bias of the target distribution toward a particular flanker), 
no effects of bias were found in ±40 and ±70 conditions 
compared with the target-alone condition, ts(13) < 0.8, 

ps > .40. Interestingly, the mean in the 40/–70 condition 
was significantly biased toward the –70° flanker (negative 
bias) compared with the target-alone condition within 
the same target SF range, t(13) = –4.69, p = .0004, Cohen’s 
d = –1.25 (Table S1). This effect on bias is consistent with 
averaging of the target and flanker values and inconsis-
tent with misreporting errors because misreporting errors 
with the 40° flanker would have shifted the mean of the 
target distribution toward the 40° flanker rather than the 
–70° flanker.

Could the effectively smaller target–flanker distance 
in SF space than in orientation space, due to the larger 
variability in SF, lead to the SF advantage of the bias 
model over the bias-misreport model? Were this the 
case, misreporting errors in SF would emerge as the 
target–flanker distance increased or, conversely, when 
the variability in SF was reduced to that in orientation. 
To test this alternative explanation, we assessed misre-
porting rates in SF using the bias-misreport model. Fig-
ure S4a in the Supplemental Material plots misreporting 
rates for SF and orientation separately for the ±40 and 
±70 flanker conditions as a function of target–flanker 
distance normalized by the baseline variability, that is, 
the distance in feature space divided by the variability 
in target-alone trials. In contrast to this prediction, 
results showed that SF misreporting rates were not sig-
nificantly above zero when the distance was large, that 
is, in the ±70 flanker condition, t(13) = 1.9, p = .079. In 
fact, misreporting rates were larger than zero in SF 
space only when flanker value overlapped with target 
distribution, such as in the ±40 flanker conditions, 
t(13) = 4.3, p = .0008, Cohen’s d = 1.15. As mentioned 
above, misreporting rates for orientation were signifi-
cantly above zero in all flanker conditions. Importantly, 
when comparing model fit separately for each flanker 
condition, we found that misreport models (mean AICc = 
1,933) outperformed the standard model without mis-
report (mean AICc = 1,956) for orientation, whereas for 
SF, the bias model (mean AICc = 1,940) outperformed 
the bias model with misreport (mean AICc = 1,955), 
even when the target–flanker distance was effectively 
larger in SF (±70°) than in orientation (±40°; Fig. S5 in 
the Supplemental Material).

Furthermore, we tested whether the misreporting rate 
would emerge in SF when the variability is the same as 
in the orientation report. We compared misreporting 
rates between observers with baseline (target-alone) 
variability below the median in SF and observers with 
baseline variability above the median in orientation (Fig. 
S4b). Even when variability was similar between SF and 
orientation, the misreporting rate was significantly 
above zero for orientation, t(6) = 2.54, p = .044, Cohen’s 
d = 0.96, but not for SF, t(6) = 1.5, p = .18. These results 
show that, contrary to this alternative explanation, the 
misreporting rate in SF did not emerge when flanker 
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distance was sufficiently large. Thus, assessing the bias 
of the mean of SF in 40/–70, assessing misreporting rates 
in SF using the bias-misreport model, and equating for 
variability in SF and orientation rule out the alternative 
interpretation that SF findings are due to a smaller target–
flanker distance.

Observers misreport orientations interdependently 
of averaging of SFs.  Heat maps of the joint distribu-
tions in each condition are presented in Figure 3b. Orien-
tation and SF estimation errors were uncorrelated in the 
target-alone condition, and only 1 observer showed a 
significant linear correlation (mean r = .002, SE = .02). 
However, across flanker conditions, there was a signifi-
cant linear correlation between orientation and SF errors 
(r = .138, SE = .03, ps < .0001), indicating that orientation 
and SF crowding errors were interdependent. Individual 
trial-by-trial linear correlations showed a significant (ps < 
.04) correlation in 10 out of 14 observers (mean r = .14, 
SE = .03).

To further assess the interdependency of crowding 
errors across feature dimensions and to compare the 
interdependency in Experiments 1 and 2, we analyzed 
the distribution of errors in one dimension on the basis 
of observers’ errors in the other dimension. That is, we 
tested whether the direction (with respect to flanker 
values) of an error in one feature dimension was depen-
dent on the direction of the error in the other feature 
dimension (see the Method section). To do so, we 
divided trials into two groups: trials in which estimation 
errors for both features (orientation vs. color or SF) 
were toward the same flanker (consistent trials) and 
trials in which errors for each feature were toward 
separate flankers (inconsistent trials). In Figure 3d, we 
plot the effects of consistent versus inconsistent errors 
across dimension on misreporting rates and estimation 
variability for color (Experiment 1), orientation (Experi-
ments 1 and 2), and SF (Experiment 2). The effect of 
consistency was found between orientation-misreporting 
rate, F(1, 13) = 11.2, p = .005, ηg

2 = .05, and SF vari-
ability, F(1, 13) = 19.86, p = .0006, ηg

2 = .02, but not 
between orientation and color (all ps > .10; for detailed 
results, see Supplementary Results, Table S4, and Fig. 
S6 in the Supplemental Material).

Simulation of pooling of a joint population coding 
can explain orientation and SF crowding.  To test 
whether the results of Experiment 2 could be explained 
by a representation in which orientations and SFs were 
bound, we compared the fit of two versions of a biologi-
cally plausible computational model that simulates a 
population of neurons. In the joint-coding-model ver-
sion, the populations jointly code orientations and SFs 
(Fig. 4; see also Supplementary Method 2 and Table S2 in 
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Fig. 4.  Simulation of population neural activity that jointly codes 
for orientation and spatial frequency (SF) fitted to Experiment 2. 
The model simulates the firing rates of three populations of neu-
rons with receptive-field locations, orientation preference, and SF 
preference. Stimuli consisted of a target presented with two flankers 
(asymmetrical flanker condition: 40/–70). A normalized Gaussian 
function determined the population level to a stimulus as a function 
of its relative distance (compared with other stimuli) from the cen-
ter of receptive field (spatial weights). Population neural activity in 
response to each location was described by a bivariate probability 
function with orientation preference (horizontal) and SF preference 
(vertical). Orientation and SF arrangement is centered over the target-
orientation and SF values. Report of orientation is based on a single 
population over the target location. Report of SF is based on pooling 
over different locations, that is, pooling with receptive field centered 
over each location.
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the Supplemental Material), whereas in the independent-
coding-model version, the populations separately code 
orientations and SFs (Table S3 in the Supplemental Mate-
rial). The models rely on population-coding principles 
and explain crowding as a weighted sum of target and 
flanker feature values within a receptive field (Harrison & 
Bex, 2015; van den Berg et al., 2010). We used a single 
bivariate Gaussian distribution to simulate the joint cod-
ing of orientation and SF and two univariate normal dis-
tributions to simulate the separate representation of 
orientation and color. The model assumes pooling over a 
larger region of space for SF than orientation to explain 
averaging in SF reports and misreporting in orientation 
reports. This assumption is related to the fact that SF 
judgments involve assessing the width and distance of 
multiple cycles inside the Gabor patch (Robson & 
Graham, 1981), whereas the orientation judgment may 
involve assessing a more narrow region of space, for 
example, a region with a higher aspect ratio (Goris, 
Simoncelli, & Movshon, 2015). In the simulation, coding 
precisions (the inverse of the standard deviation of the 
Gaussian response function) and the standard deviation 
of the Gaussian receptive field were directly responsible 
for orientation-estimation variability and misreporting 
rate, respectively. Therefore, these parameters were 
determined on the basis of the fitting of the probabilistic 
standard misreport model to the observed orientation 
data. Both simulated models were fitted to the results of 
Experiment 2 (both r2s = .88). However, unlike in Experi-
ment 2, the independent-coding model showed no cor-
relation between orientation and SF (mean r = 0) and no 
effect of consistency (Fig. 3e). The joint-coding model, 
on the other hand, showed the same interdependent pat-
tern as the results of Experiment 2 (Fig. 3c), including the 
correlation between orientation and SF (mean r = .23) 
and the increase in the misreporting rate of orientations 
and standard deviation of SF in consistent versus incon-
sistent trials (Fig. 3e). These results support the conclu-
sion that joint coding of orientation and SF underlies the 
results of Experiment 2.

Discussion

In this study, we simultaneously characterized the pat-
tern of crowding errors within and between feature 
dimensions. In three experiments, we demonstrated 
variations in the pattern of crowding errors based on 
the specific feature dimensions (orientation, color, and 
SF) and their conjunctions. Crowding is more pro-
nounced for orientation than for color. Crowding 
reflects misreporting a flanker orientation or color 
instead of those of the target but averaging of their SFs. 
The pattern of results was contingent on the feature-
dimension type but not the stimulus type: Observers 
misreported the target orientation regardless of whether 

the stimulus was a colored T or a grating. The distinct 
pattern of crowding errors in each dimension suggests 
a distinct representation for each feature dimension.

Crowding errors for orientation and SF were inter-
dependent, but those for orientation and color were 
independent. These findings were shown by the analy-
sis of the joint distribution of feature-dimension errors 
and trial-by-trial correlations. Moreover, comparison of 
model parameters revealed higher orientation misre-
porting rates when SF and orientation errors were 
toward the same flanker, but that was not the case for 
orientation and color. These findings suggest that the 
spatial integration that underlies crowding operates 
after orientation is bound with SF but before it is bound 
with color.

Not all features behave the same 
under crowding: errors within feature 
dimensions

The present study challenges many models’ implicit 
assumption that crowding operates in the same manner 
across different feature dimensions (Pelli & Tillman, 
2008; Whitney & Levi, 2011). Investigations supporting 
this view had not tested for qualitative differences in 
the pattern of errors across dimensions (Greenwood 
et al., 2012; Põder & Wagemans, 2007; van den Berg 
et al., 2007). Here, within the same display, we showed 
both quantitative and qualitative differences in the pat-
tern of errors across different dimensions. First, orienta-
tion misreporting was 3 times more likely than color 
misreporting, demonstrating that estimation of orienta-
tion is more susceptible to crowding than estimation of 
color. Second, whereas orientation or color was misre-
ported, SFs were averaged in the SF dimension. This 
variation between misreporting and averaging occurred 
within the same stimuli and display (Gabor patch). It 
has been proposed that observed errors may be con-
tingent on the target–flankers orientation distance 
(Harrison & Bex, 2015; Mareschal, Morgan, & Solomon, 
2010; but see Ester et al., 2015). Here, variation between 
misreporting errors and averaging errors cannot be 
explained by target–flanker distance. Observers misre-
ported orientation and averaged SF even when the dis-
tance in feature space was effectively the same (Figs. 
S4b and S5). Thus, this study shows that crowding varies 
as a function of the feature dimension being reported.

Crowding and feature binding: errors 
between feature dimensions

Numerous studies have demonstrated observers’ failure 
to correctly report the conjunction of feature dimensions 
of peripheral items (e.g., color and shape), that is, mis-
binding errors, also known as illusory conjunctions 
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(e.g., Dowd & Golomb, 2019; Vul & Rich, 2010; for a 
review, see Di Lollo, 2012). According to popular views, 
outside the focus of attention, independent sampling of 
individual features occurs under location uncertainties 
and therefore leads to the misbinding of features (Treis-
man & Schmidt, 1982; Vul & Rich, 2010). Although inves-
tigations of misbinding errors have often manipulated 
attention (Dowd & Golomb, 2019; Vul & Rich, 2010), 
many of these studies were conducted using a crowded 
display, that is, stimuli spacing was below the critical 
space of crowding (Pelli et al., 2004), suggesting that at 
least some misbinding errors can be explained with the 
same processes underlying crowding. However, whereas 
crowding errors are characterized by errors within a 
particular feature dimension (that can lead to either 
averaging or misreporting), investigations of misbinding 
errors in the visual periphery have focused on errors 
between feature dimensions. For example, Vul and Rich 
(2010) investigated misbinding errors by manipulating 
top-down attention and analyzing error distributions in 
the location space of categorical forced-choice reports 
for color and shape (letter); therefore, they assessed 
only errors between feature dimensions. Yet, until now, 
no study had directly investigated the relations between 
crowding errors (or errors within feature dimensions) 
and misbinding errors (or errors between feature 
dimensions).

In this study, by using dual continuous-estimation 
reports of two simultaneously presented feature dimen-
sions, we were able to quantitatively assess errors due 
to crowding both within and between feature dimen-
sions. The results reveal that in a crowded display, color 
and orientation remain unbound, even when both 
dimensions are jointly reported. Unlike color, SF remains 
bound with orientation in crowding displays; observers 
tended to misreport flanker orientation and average SF 
with the same flanker. This contingency of binding errors 
on the specific feature dimensions may explain why 
some studies using a set of stimuli suggested that crowd-
ing reflects interference in feature binding (Pelli et al., 
2004; Põder & Wagemans, 2007), whereas another study 
using a different set of stimuli suggested that crowding 
follows feature binding (Greenwood et al., 2012).

Conclusion

This study directly links two mostly independent topics 
of research—crowding and feature binding—and chal-
lenges conventional views in each of them. By testing 
crowding both within and between feature dimen-
sions, we showed that it is not a uniform phenomenon: 
It reflects different operations depending on the spe-
cific feature dimensions and their conjunctions. Both 
the data analysis and our model simulation suggest 

that crowding reflects spatial integration over neural 
populations that encode both orientation and SF toge
ther but color separately.
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