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Abstract

Humans often fail to identify a target because of nearby flankers. The nature and stages at which this crowding occurs
are unclear, and whether crowding operates via a common mechanism across visual dimensions is unknown. Using
a dual-estimation report (N = 42), we quantitatively assessed the processing of features alone and in conjunction
with another feature both within and between dimensions. Under crowding, observers misreported colors and
orientations (i.e., reported a flanker value instead of the target’s value) but averaged the target’s and flankers’ spatial
frequencies (SFs). Interestingly, whereas orientation and color errors were independent, orientation and SF errors
were interdependent. These qualitative differences of errors across dimensions revealed a tight link between crowding
and feature binding, which is contingent on the type of feature dimension. These results and a computational model
suggest that crowding and misbinding are due to pooling across a joint coding of orientations and SFs but not of colors.
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Recognition of peripheral objects is fundamentally lim-
ited by their spacing, not just by the visibility of their
features. A target that can be easily identified when
presented alone becomes unrecognizable when pre-
sented alongside nearby flankers (i.e., crowded; Bouma,
1970; Levi, 2008; Pelli & Tillman, 2008). This breakdown
in object recognition (Pelli, Palomares, & Majaj, 2004)
corresponds to the increase in positional uncertainty in
the periphery resulting from larger receptive fields
(Freeman & Simoncelli, 2011; Levi & Klein, 1986). A
widely accepted model of object recognition assumes
two stages: feature representation and feature binding
into an object (reviewed by Di Lollo, 2012). However,
whether and how crowding reflects interference in
either one or both of these stages are still unclear (see
reviews by Pelli & Tillman, 2008; Whitney & Levi, 2011).

Recent studies have posited that crowding occurs either
at an early visual stage, such as V1 or V2 (Freeman &
Simoncelli, 2011; Nandy & Tjan, 2012), or at multiple stages
of visual processing and object representation (Kimchi &

Pirkner, 2015; Manassi & Whitney, 2018). Proposed models
explain crowding as reflecting either substitution of objects
(Ester, Klee, & Awh, 2014; Ester, Zilber, & Serences, 2015;
Huckauf & Heller, 2014; Strasburger, Harvey, & Rentschler,
1991) or pooling of features (Freeman & Simoncelli, 2011;
Greenwood, Bex, & Dakin, 2009; Harrison & Bex, 2015;
Keshvari & Rosenholtz, 2016; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; van den Berg, Roerdink, &
Cornelissen, 2010). Substitution models predict confusion
errors, such as misreporting flanker items instead of the
target (Ester et al., 2014; Ester et al., 2015). Pooling models
typically predict feature-averaging errors, such as reporting
a combination of target and flanker features (Parkes et al.,
2001), but recent pooling models have attempted to
explain both averaging and confusion errors (Freeman &
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Simoncelli, 2011; Harrison & Bex, 2015; Keshvari &
Rosenholtz, 2016).

Several recent studies have suggested that a general
mechanism can explain crowding in various feature
dimensions (Greenwood, Bex, & Dakin, 2012; Keshvari
& Rosenholtz, 2016; Pdder & Wagemans, 2007; van den
Berg, Roerdink, & Cornelissen, 2007). Moreover, as
stated in an authoritative and widely cited review, “most
studies on crowding implicitly (if not explicitly) argue
that crowding is a unitary phenomenon, occurring at a
single circumscribed level of visual processing, or per-
haps in a particular visual area” (Whitney & Levi, 2011,
p. 165). Therefore, the proposed model presumably
predicts the same type of crowding errors regardless
of the types of feature dimensions, such as orientation,
color, and spatial frequency (SF). However, whether
crowding errors are qualitatively the same across dif-
ferent feature dimensions and their conjunctions (i.e.,
feature binding) is unknown. Most studies have inves-
tigated crowding errors within a particular dimension
(e.g., orientation; Ester et al., 2015; Greenwood, Bex,
& Dakin, 2010; Harrison & Bex, 2015; Parkes et al.,
2001; Scolari, Kohnen, Barton, & Awh, 2007; van den
Berg et al., 2010; Yashar, Chen, & Carrasco, 2015), and
the few investigations of errors within various dimen-
sions could not distinguish averaging and substitution
errors, nor could they test for qualitative differences
across dimensions (Greenwood et al., 2012; Poder &
Wagemans, 2007; van den Berg et al., 2007). Thus, it is
still unknown how each of the basic feature dimensions
behaves under crowding and whether they behave
interdependently or independently from each other.

In this study, we had two main goals. First, we tested
the assumption that the same crowding mechanism
applies to different features (van den Berg et al., 2007,
Whitney & Levi, 2011). For orientation, SF, and color, we
investigated the contribution of each flanker to crowd-
ing. Second, we investigated the processing stage at
which crowding occurs: before or after features are
bound into an object. To do so, we employed a feature-
estimation technique that enabled us to simultaneously
characterize the pattern of crowding errors within and
between feature dimensions. Thus, we were able to
quantitatively assess not only the accuracy of feature
perception under crowding conditions but also the accu-
racy of feature binding.

Experiment 1: Orientation and Color

Observers performed an orientation- and color-estimation
task of a peripheral (7° of eccentricity) colored T-shaped
target (Fig. 1a). The orientation and color of the target
were each independently selected at random from two
circular parameter spaces. Target orientation was ran-
domly selected from 180 values evenly distributed

between 1° and 360°. Target color was randomly selected
out of 180 values evenly distributed along a circle in the
Derrington, Krauskopf, and Lennie (DKL) color space
(Derrington, Krauskopf, & Lennie, 1984). Stimuli color
and background were equiluminant. In Phase 1, we
tested the appropriateness of the estimation task with the
equiluminant DKL colors. The results showed a linear
relation between estimation and target color values, rul-
ing out the possibility that the task was mediated by color
categories (e.g., red, blue; see Fig. S1 in the Supplemental
Material available online). In Phase 2, the target could be
either alone (target-alone condition) or flanked by two
similar T-shaped items (flanker conditions). Target and
flankers were radially aligned on the horizontal meridian
axis on either the left or right hemifield. The center-to-
center distance between the target and the flankers was
2.1°, within the region of radial crowding (Bouma, 1970).
Flankers’ orientation and color were selected out of the
same circular parameter spaces as the target but differed
in values from those of the target. Each flanker had a
unique relation to the target in both parameter spaces
(negative or positive). This design enabled us to track the
direction and distance of estimation errors in both feature
dimensions relative to each flanker. We analyzed the error
distributions (the estimated value — the true target value)
of each feature dimension by fitting probabilistic models.

Method

Observers. Fourteen undergraduate and graduate stu-
dents from New York University participated in this
experiment (5 female; age: range = 18-29 years, M =
21.00, SD = 3.28). On the basis of an a priori power
analysis using effect sizes from previous studies (Ester
etal., 2014), we estimated that a sample size of 12 observ-
ers was required to detect a crowding effect with 95%
power, given a .05 significance criterion. We collected
data from 2 more observers in anticipation of possible
dropouts or equipment failure. All observers were naive
to the purposes of the experiment. All observers were
checked for normal color vision and reported having
normal or corrected-to-normal visual acuity. Written
informed consent was obtained from all observers before
the experiment. The University Committee on Activities
Involving Human Subjects at New York University
approved the experimental procedures.

Apparatus. Stimuli were programmed in MATLAB (The
MathWorks, Natick, MA) with the Psychophysics Toolbox
extensions (Kleiner, Brainard, & Pelli, 2007) and presented
on a gamma-corrected 21-in. CRT monitor (Sony GDM-
5402; 1,280 x 960 resolution and 85-Hz refresh rate) con-
nected to an iMac. A chin rest was used at a viewing
distance of 57 cm. Colors and luminance were calibrated
using a SpectraScan Spectroradiometer PR-670 (Photo
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Fig. 1. Orientation- and color-estimation tasks, stimuli, conditions, and results in Experiment 1. On each trial (a), observers viewed a
T-shaped target and then had to report the target’s color and orientation. The target could appear alone (target-alone condition), flanked
by two symmetrical T-shaped items (£60 and £90 flanker conditions), or flanked by two asymmetrical T-shaped items (60/-90 flanker
condition). In Experiment 1, the order of reports (orientation and color) alternated across blocks and was counterbalanced for each
observer. In the Supplementary Experiment (see the Supplemental Material available online), observers reported color and orientation
simultaneously. The distribution of errors relative to target feature values is shown separately for (b) the target-alone condition and
(¢) each of the flanker conditions. Error distributions are plotted as a function of the deviation between the estimation report and the
target’s feature value for orientation (bars above heat map), color (bars to the right of heat map), and their conjunction (heat map). The
axes are in units of standard deviation (std) of the error distribution in target-alone trials. Data from asymmetrical flankers were aligned
to 60°/-90° (as pictured) during analysis. Solid lines indicate the response probabilities predicted by the standard model in the target-
alone condition and by the standard misreport model in the flanker conditions.

Research, Syracuse, NY) spectrometer. Eye movements
were monitored and recorded by an EyelLink 1000 (SR
Research, Kanata, Ontario, Canada) infrared eye tracker.
Observers used the mouse to generate responses.

Stimuli and procedure. Figure 1la illustrates a trial
sequence. Each trial began with a fixation mark—a cen-
tered black plus sign subtending 0.5°—along with two

dots subtending 0.05° in radius. The dots were presented
on the horizontal meridian, one in the left hemifield and
the other in the right hemifield. Each dot was centered at
an eccentricity of 7° and indicated the two possible target
locations. Following observer fixation (for a random dura-
tion between 300 and 800 ms), the stimulus display
appeared for 75 ms. In the stimulus display, the target was
a T-shaped item, subtending 1.6° x 1.6° and drawn with a
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0.3° stroke. The target was presented on the horizontal
meridian in either the left or right (randomly selected) hemi-
fields and was centered at 7° eccentricity. The orientation
and color of the target were each independently selected at
random from two circular parameter spaces. Target orienta-
tion was randomly selected out of 180 values evenly distrib-
uted between 1° and 360°. Target color was randomly
selected out of 180 values evenly distributed along a circle
in the DKL color space (Derrington et al., 1984; see Supple-
mentary Method 1 in the Supplemental Material). Stimuli
color and background were equiluminant (56 cd/m?).

The target could be either alone (target-alone condi-
tion) or flanked by two similar T-shaped items (flanker
conditions) centered on the horizontal meridian to the
left and to the right of the target (each 2.1° of center-
to-center distance from the target). To monitor eye fixa-
tion and stimulus eccentricity, we used on-line eye
tracking (see the Apparatus section). The trials in which
the observer broke fixation (> 1.5° from fixation) were
terminated and rerun at the end of the block.

The stimulus display was followed by a blank inter-
val of 500 ms, which was then followed by the response
displays, which remained on screen until the observer
completed both responses. The response displays
included an orientation circle (a black circle 0.08° thick
with an inner radius of 3.8° around the center of the
screen) along with a color wheel (1.5° thick with an
inner radius of 2.25°) containing the 180 colors. Observ-
ers were asked to estimate the target orientation by
pointing and clicking the mouse cursor at a position
on the orientation wheel and to estimate the target
color by pointing and clicking the mouse cursor at a
position on the color wheel. During report, a visual
feedback of the selected feature was presented at the
location of the target. A letter at fixation (either an O
for orientation first or a C for color first) indicated
report order, which was counterbalanced across blocks.

Design.

Phase 1. To test the appropriateness of the estima-
tion task with the equiluminant DKL colors, we tested
the target-alone condition. Figure S1 illustrates the color-
estimation values as a function of target color values for
the selected eccentricity. The results showed a linear rela-
tion between estimation and target color values, ruling
out the possibility that the task was mediated by color
categories (e.g., red, blue).

Phase 2. There were four conditions: three flanker
conditions (60, 60/-90, and +90; Fig. 1¢) and the target-
alone condition (Fig. 1b). Flankers’ orientation and color
differed from those of the target by either £60° or £90°
in orientation space and DKL color space. Each flanker
had the same absolute target—flanker difference in both

feature dimensions. Within each feature dimension, one
flanker had a positive target—flanker difference and the
other a negative target—flanker difference (randomly
selected); each flanker had a unique relation to the target
(negative or positive) in both feature dimensions. This
design enabled us to track the direction of estimation
errors related to each flanker in both feature dimensions.
The three flanker conditions were based on the com-
binations of the target-flanker differences with the two
flankers: (a) 60° and —60°, (b) 90° and —-90°, and (¢) 60°
and -90° or 90° and —60°, which were labeled (a) +60,
(b) 90, and (¢) 60/-90, respectively. Each condition had
200 trials (800 trials overall). Each observer completed 10
blocks of 80 trials over two 50-min sessions (5 blocks per
session). In each block, there were 20 trials from each of
the four conditions. Response-display order was coun-
terbalanced across blocks. The experiment began with
an 80-trial practice block. Observers were encouraged to
take a short rest between blocks.

Models and analyses. We analyzed the error distribu-
tions by fitting probabilistic-mixture models, which were
developed from the standard model and the standard-
with-misreporting model (Bays, Catalao, & Husain, 2009):
For each trial, we calculated the estimation error for ori-
entation and color by subtracting the estimation value
from the true value of the target. In the flanker condi-
tions, we aligned the data so that across feature dimen-
sions, one flanker was consistently positive and the other
was consistently negative. In the 60/-90 flanker condi-
tion, we aligned all data to be 60° and -90°. These align-
ments enabled us to track the effect of each individual
flanker on the error distribution of each feature dimen-
sion separately and in conjunction with the other feature
dimension. We compared five models.

The standard mixture model (Equation 1) uses a von
Mises (circular) distribution to describe the probability
density of the pooling estimation of the target’s feature
and a uniform component to reflect the guessing in
estimation. The model has two free parameters:

PO) = (1 =) /(0), + y(%), M

where 0 is the value of the estimation error, y is the
proportion of trials in which observers are randomly
guessing (guessing rate), f{0), is the von Mises distribu-
tion with a standard deviation ¢ (variability; the mean
was set to zero), and n is the total number of possible
values for the target’s feature.

The bias mixture model (Equation 2) has three free
parameters. In addition to the variability and guessing
rate, this model includes a free parameter for the mean
() of the error distribution:
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PO =0A-v) [0, + y(%). (2)

The standard misreport model (Equation 3) has three
free parameters. The model adds a misreporting com-
ponent to the standard mixture model, which describes
the probability of reporting one of the flankers to be
the target:

PO =A-y-P)fO), + y(%) + B%Zf’ f0),, (3

where B is the probability of reporting a flanker as the
target, m is the total number of nontarget items (two
in the present study), and 0; is the error to the feature
of the ith flanker. Notice that f(0), the von Mises dis-
tribution of the estimation errors, here describes the
distribution when the observer correctly estimated the
target’s feature; thus, its mean is zero. In contrast, for
/(6)), the distribution of estimating one flanker, the
mean would be the feature distance of the corresponding
flanker to that of the target. The variability of the distri-
butions for each stimulus was assumed to be the same.

The bias misreport model (Equation 4) has four free
parameters. In addition to the parameters in the standard
misreport model, there is a free parameter for the mean
() of the distribution of estimating the target’s feature
to better account for possible pooling and substitution:

POY=(1—y =B SO, + y[%j + B%Zf’ £00),, (4

The educated-guess model (Equation 5) has four free
parameters. The model adds a misreporting component
of the guessed stimuli other than the stimuli presented
to the standard misreport model. This misreporting
component is similar to the misreporting component
of the flankers but has a different probability:

PO=(A—y—B, —B) /O, + y(lj +
) ) " (5)
B — 3O + B 2, /O],

where B is the probability of misreporting a flanker as
the target, and B is the probability of misreporting a
guessed feature other than the flankers presented. This
model follows the assumption that the observer may
have the information about one feature and then guess
the feature of the target on the basis of all possible

target—flanker distances. This educated guess could
result in misreporting one flanker as the target or mis-
reporting features not presented in the corresponding
trial. For example, there are four possible target—flanker
distances: —90°, -60°, 60°, and 90°. In a 60°/-60° trial,
for each detected feature, there are five possible feature
values (including the stimulus itself) that could be the
possible target; therefore, there will be two flankers
(=60°, 60°; m = 2) with the misreporting probability f,,
and 10 not-presented guessed stimuli (some of them
are overlapped, and the nonoverlapping feature values
are —150, -120, -90, -30, 30, 90, 120, and 150; & = 10)
with the misreporting probability B.

We used the MemToolbox (Suchow, Brady, Fougnie,
& Alvarez, 2013) to fit the models and compared the
Akaike information criterion with correction (AICc) to
assess model fits.

Results

Misreporting of orientations or colors. For each fea-
ture dimension, the estimation error was defined as the
deviation between the reported and the actual feature
value of the target (Figs. 1b and 1c). We analyzed the
error distributions by fitting five probabilistic-mixture
models to the individual data (see the Method section).
All models included a von Mises (circular) distribution to
describe the probability density of precision errors for the
target’s feature as well as a uniform component to capture
the guessing in estimation. We compared these basic-mix-
ture models (the standard and bias models), models that
also include a misreports component to describe the
probability of reporting one of the flankers to be the tar-
get (the standard misreport and bias misreport models),
and a model that also includes an educated-guess compo-
nent to describe the proportion of observers who guessed
the target on the basis of flankers’ values (the educated-
guess model). We compared models by calculating AICc
values for the individual model fits (Fig. 2). Table S1 in
the Supplemental Material shows fitted model parameters
in each condition and dimension.

To compare crowding for orientation and color, we
converted each feature-dimension value with units of
variability (o) of the error distribution in target-alone
trials (i.e., angle units/c in target alone) so that in each
feature dimension, target—flanker distance was pre-
sented in relation to the observer’s precision in the
target-alone trials. These standardized units of target—
flanker distance (£60° = £4.60° and £90° = +6.90° for
orientation; £60° = £3.43° and +90° = £5.15° for color)
confirmed that the effect of flanker interference was
comparable across feature dimensions (Figs. 1b and 10).
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Fig. 2. Individual goodness of fit of each of the five models to the flanker-conditions data, separately for the orientation and color
reports in Experiment 1 and the orientation and spatial-frequency (SF) reports in Experiment 2. The mean Akaike information criterion
with correction (AICc) was calculated by subtracting the mean AICc of the best-fitting model (lowest AICc) from the individual AICc
scores of each mixture model. The five models were standard (S), bias (B), standard with misreport (SM), bias with misreport (BM),

and educated guesses (EG). Error bars show +1 SEM.

On target-alone trials, the error distributions for both
feature dimensions were well described by a von Mises
distribution centered on the target value with an added
nonzero uniform distribution (y) for both orientation
and color (Fig. 1b), #(13) = 3.03, p = .01, Cohen’s d =
0.81, and #(13) =2.98, p = .011, Cohen’s d = 0.80, respec-
tively, indicating that a small yet significant proportion
of the responses was statistically unrelated to the target
(i.e., guessing).

For both orientation and color, models with misre-
ported components outperformed the models without
the misreported component. That is, a significant pro-
portion of errors was centered on the value of each of
the two flankers, impairing the fit of a single von Mises
distribution to the data. Importantly, adding an educated-
guess component to the misreport model did not improve
the fit, indicating that observers were unaffected by the
partial correlation between target and flanker values. In
the flanker conditions, the guessing rate was higher for
both orientation and color, #s(13) > 2.19, ps < .05
(Tables S1 and S4 in the Supplemental Material). The
misreporting rate () was larger than zero in all flanker
conditions, #s(13) > 5.22, ps < .001. The variability (o)
of errors centered on the target increased significantly
relative to the target-alone condition, £s(13) > 3.32,
ps < .01, indicating that crowding led to reduced preci-
sion and increased the guessing rate and misreporting
errors.

Next, we compared misreporting rates between orien-
tation and color. Orientations were misreported more
than color—orientation: averaged B = 0.27, SE = 0.03;
color: averaged B = 0.086, SE = 0.01; «(13) = 7.64,
p <.001, Cohen’s d = 2.04—indicating a larger crowding
effect for estimation of orientation than for estimation of
color.

Observers misreport orientations independently
Jrom color. To assess whether orientation and color
errors occur before or after orientation and color are
bound, we used trial-by-trial correlation between orienta-
tion errors and color errors to test the interdependency of
crowding errors across feature dimensions. The joint dis-
tributions in each condition are presented in Figures
1b and 1c. In the target-alone condition, only 4 out of
14 observers showed a significant Pearson correlation
between orientation and color errors (overall mean r =
.06, SE = .04). In the flanker conditions (all three con-
ditions collapsed), only 3 observers showed a signifi-
cant correlation (overall mean » = .03, SE = .02). These
findings show that orientation and color estimation
were predominantly uncorrelated.

In both feature dimensions, the nature of errors was
largely the same: Observers reported the orientation or
color of a flanker instead of that of the target (misre-
porting errors). Note that it is unlikely that orientation
errors were the result of combining target and flanker
T-shape parts (e.g., combining target “stem” with
flanker “hat”) because such combinations would lead
to reporting a vast range of orientations that would be
reflected by an increase in the uniform distribution
rather than by misreporting errors. The misreporting
errors in color could not be explained by optical blur
because such blur predicts averaging errors. Impor-
tantly, orientation and color misreporting were inde-
pendent from each other, suggesting that orientation
and color are unbound under crowding conditions.

An alternative explanation is that the separate
reports for color and orientation encouraged observers
to separately encode color and orientation. Hence, the
uncorrelated errors across dimensions could have been
due to response strategy rather than an unbounded
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Fig. 3. Stimuli, results, and simulated data of Experiment 2 and comparison with Experiment 1. On each trial in Experiment 2 (a), observers
viewed a target Gabor patch and then had to separately report its orientation and spatial frequency. The target could appear alone (target-
alone condition), flanked by two symmetrical Gabors (£40 and +70 flanker conditions), or flanked by two asymmetrical Gabors (40/-70
flanker condition). The order of feature report (SF and orientation) alternated across blocks and was counterbalanced for each observer. The
distribution of errors relative to target feature values in Experiment 2 is shown (b) for the observed data and (c) for the simulated data (by
sampling 100,000 trials per condition) from the joint-coding model, separately for each condition. Error distributions are plotted as a function
of the deviation between estimation report and the target’s feature value for orientation (bars above heat map), SF (bars to the right of heat
map), and their conjunction (heat map). The axes are in units of standard deviation (std) of the error distribution in target-alone trials. Solid
lines are model fits for orientation (standard misreport model) and SF (bias model). In (d) and (e), comparisons of misreporting rates (top
panels) and standard deviations (bottom panels) in consistent and inconsistent trials are shown. Results are shown for (d) observed data in
the orientation (Ori), color, and SF trials in Experiments 1 and 2 and (e) simulated data for the orientation and SF trials of the joint-coding
model and independent-distribution model. Error bars show +1 SEM (Morey, 2008). Asterisks in (d) indicate significant differences between

trial types (p < .0D).

perceptual representation of features. To rule out this
alternative explanation, we conducted a control experi-
ment in which observers reported both orientation and
color of the target with a single response. This experi-
ment yielded converging results (see Supplementary
Experiment and Fig. S2 in the Supplemental Material):
Uncorrelated trial-by-trial errors were maintained even
when observers simultaneously reported both dimen-
sions. Taken together, these results show that orienta-
tion and color crowding errors occur before features
are bound into an object.

Experiment 2: Orientation and SF

In this experiment, we tested whether the pattern of
results obtained in Experiment 1 would also emerge
with different stimuli and feature dimensions. Observers
viewed sinusoidal gratings (Gabor patches) and esti-
mated the target’s SF and orientation (Fig. 3a). These
two dimensions are jointly coded by individual neurons
in V1 (De Valois, Albrecht, & Thorell, 1982); thus, we
hypothesized that instead of being independent, crowd-
ing errors may be interdependent.

Method

Observers. Fourteen undergraduate students from New
York University participated in this experiment (12 female;
age: range = 18-21 years, M = 19.43 years, SD = 0.85). All
observers were naive to the purposes of the experiment,
and all reported having normal or corrected-to-normal
visual acuity. Written informed consent was obtained from
all observers before the experiment. The University Com-
mittee on Activities Involving Human Subjects at New
York University approved the experimental procedures.

Apparatus, stimuli, procedure, and design. The se-
quence of events within a trial and sample stimulus dis-
plays are presented in Figure 3a. The apparatus, stimuli,
procedure, and design were the same as in Experiment 1,
except for the following changes. Target and flankers were

sinusoidal gratings (Gabor patches) with a 2-D Gaussian
spatial envelope (8D = 0.325°, 85% contrast). The orienta-
tion and SF of the target were each randomly and inde-
pendently selected from two parameter spaces. The
viewing distance was 91 cm. Target and flankers’ center-to-
center distance was 2.15°. The orientation parameter
space ranged from 1° to 180° of visual angle. Stimulus
display duration was 200 ms.

Phase 1. To determine the SF values of the estimation
task, we tested the target-alone condition with different
SF values, linearly spaced. On the basis of this test, we
set the SF parameter space to correspond to the range of
1 to 5 cycles per degree (cpd). Because SF discriminabil-
ity varies across SF values (Caelli, Brettel, Rentschler, &
Hilz, 1983), we scaled the 180 unit steps of SF that were
used in Phase 2 according to the variation in the estima-
tion task of SF values in Phase 1. To do so, we fitted
an exponential function to the standard deviation of the
estimation data for each SF value in Phase 1 (Fig. S3 in
the Supplemental Material).

Phase 2. Flankers’ orientation and SF differed from
the target by either +40 or +70 units of orientation (°)
and SF (see Phase 1). Each flanker had the same abso-
lute target—flanker difference in both feature dimensions.
Within each feature dimension, one flanker had a positive
target—flanker difference and the other a negative target—
flanker difference (randomly selected); each flanker had
a unique relation to the target (negative or positive) in
both feature dimensions. Target—flanker distance within
the parameter space was (a) 40°/-40°, (b) 70°/-70°, and
() 40°/=70° or 70°/-40°, which were labeled (a) +40,
(b) £70, and (c) 40/=70, respectively.

In all trials, the target orientation was randomly
selected from the range of 1° to 180° with a step size of
2°. In target-alone trials, the target SF was randomly
selected out of the 180 steps, as determined in Phase 1.
However, because SF is not a circular space, in the crowd-
ing display, flankers’ SF values restricted the range of
target SF values; the target SF ranged from 41 to 140 SF
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steps (1.82—4.07 cpd) in the £40 flanker condition, 71 to
110 SF steps (2.49-3.39 cpd) in the 70 flanker condition,
and 41 to 110 SF steps (1.82-3.39 c¢pd) and 71 to 140 SF
steps (2.49-4.07 cpd) in the 40/-70 flanker condition.
There were two response displays. In the orientation
response display, observers had to estimate the target
orientation by pointing and clicking the mouse cursor
at a position on the orientation wheel. In the SF
response display, observers estimated SF by pointing
and clicking the mouse cursor on a centered horizontal
line (0.08°-thick two-directional arrow 11.2° in length).
A minus sign on one side and a plus sign on the other
indicated the direction of SF increase. Because SF is
not circular, we extended the range of the SF response
(0.48-7.35 cpd) beyond that of the target (1-5 cpd).

Models and analyses. Because SF is not circular, we
used a Gaussian distribution when fitting SF to the mix-
ture models and von Mises distribution when fitting ori-
entation to the mixture models. Because we had to
restrict the range of the target SF in the flanker condi-
tions, we equated the range of target SF when comparing
the SF flanker and target-alone conditions.

Results

Misreporting of orientations but averaging of SFs.
Error distributions differed between orientation and SF.
Whereas orientation errors were best described by misre-
porting models, SF errors were best described by a single
Gaussian function with an added uniform distribution
(bias models; Fig. 2). In both feature dimensions, the best-
fitting models outperformed the educated-guess model.
Table S1 shows parameters of the best-fitting model for
each condition and dimension.

Orientation. As in Experiment 1, significant propor-
tions of orientation error in the flanker conditions were
due to misreporting, /s(13) > 3.6, ps < .004, and guess-
ing, 1s(13) > 3.6, ps < .003 (Fig. 3b; Table S4 includes
all statistical values). But the variability of the von Mises
distribution between flanker and target-alone conditions
was equivalent, fs < 2.1, ps > .06. These results indicate
that orientation-estimation errors were due to increases
in the guessing and misreporting rates.

Spatial frequency. The variance of SF errors was larger
in the flanker conditions than in the target-alone condi-
tion (Tables S1 and S4), ts(13) > 3.9, ps < .002. The pro-
portion of guesses did not increase compared with the
target-alone condition, #s(13) < 2.1, ps > .05. When we
tested the mean (n) of the Gaussian distribution (i.e., the
bias of the target distribution toward a particular flanker),
no effects of bias were found in £40 and +£70 conditions
compared with the target-alone condition, #s(13) < 0.8,

ps > .40. Interestingly, the mean in the 40/-~70 condition
was significantly biased toward the —70° flanker (negative
bias) compared with the target-alone condition within
the same target SF range, #(13) = —-4.69, p = .0004, Cohen’s
d =-1.25 (Table S1). This effect on bias is consistent with
averaging of the target and flanker values and inconsis-
tent with misreporting errors because misreporting errors
with the 40° flanker would have shifted the mean of the
target distribution toward the 40° flanker rather than the
—70° flanker.

Could the effectively smaller target—flanker distance
in SF space than in orientation space, due to the larger
variability in SF, lead to the SF advantage of the bias
model over the bias-misreport model? Were this the
case, misreporting errors in SF would emerge as the
target—flanker distance increased or, conversely, when
the variability in SF was reduced to that in orientation.
To test this alternative explanation, we assessed misre-
porting rates in SF using the bias-misreport model. Fig-
ure S4a in the Supplemental Material plots misreporting
rates for SF and orientation separately for the £40 and
170 flanker conditions as a function of target—flanker
distance normalized by the baseline variability, that is,
the distance in feature space divided by the variability
in target-alone trials. In contrast to this prediction,
results showed that SF misreporting rates were not sig-
nificantly above zero when the distance was large, that
is, in the £70 flanker condition, #(13) = 1.9, p = .079. In
fact, misreporting rates were larger than zero in SF
space only when flanker value overlapped with target
distribution, such as in the *40 flanker conditions,
1(13) = 4.3, p = .0008, Cohen’s d = 1.15. As mentioned
above, misreporting rates for orientation were signifi-
cantly above zero in all flanker conditions. Importantly,
when comparing model fit separately for each flanker
condition, we found that misreport models (mean AICc =
1,933) outperformed the standard model without mis-
report (mean AICc = 1,956) for orientation, whereas for
SF, the bias model (mean AICc = 1,940) outperformed
the bias model with misreport (mean AICc = 1,955),
even when the target—flanker distance was effectively
larger in SF (£70°) than in orientation (£40°; Fig. S5 in
the Supplemental Material).

Furthermore, we tested whether the misreporting rate
would emerge in SF when the variability is the same as
in the orientation report. We compared misreporting
rates between observers with baseline (target-alone)
variability below the median in SF and observers with
baseline variability above the median in orientation (Fig.
S4b). Even when variability was similar between SF and
orientation, the misreporting rate was significantly
above zero for orientation, #(6) = 2.54, p = .044, Cohen’s
d = 0.96, but not for SF, #(6) = 1.5, p = .18. These results
show that, contrary to this alternative explanation, the
misreporting rate in SF did not emerge when flanker



1542

Yashar et al.

distance was sufficiently large. Thus, assessing the bias
of the mean of SF in 40/-70, assessing misreporting rates
in SF using the bias-misreport model, and equating for
variability in SF and orientation rule out the alternative
interpretation that SF findings are due to a smaller target—
flanker distance.

Observers misreport orientations interdependently
of averaging of SFs. Heat maps of the joint distribu-
tions in each condition are presented in Figure 3b. Orien-
tation and SF estimation errors were uncorrelated in the
target-alone condition, and only 1 observer showed a
significant linear correlation (mean » = .002, SE = .02).
However, across flanker conditions, there was a signifi-
cant linear correlation between orientation and SF errors
(r=.138, SE = .03, ps < .0001), indicating that orientation
and SF crowding errors were interdependent. Individual
trial-by-trial linear correlations showed a significant (ps <
.04) correlation in 10 out of 14 observers (mean r = .14,
SE = .03).

To further assess the interdependency of crowding
errors across feature dimensions and to compare the
interdependency in Experiments 1 and 2, we analyzed
the distribution of errors in one dimension on the basis
of observers’ errors in the other dimension. That is, we
tested whether the direction (with respect to flanker
values) of an error in one feature dimension was depen-
dent on the direction of the error in the other feature
dimension (see the Method section). To do so, we
divided trials into two groups: trials in which estimation
errors for both features (orientation vs. color or SF)
were toward the same flanker (consistent trials) and
trials in which errors for each feature were toward
separate flankers (inconsistent trials). In Figure 3d, we
plot the effects of consistent versus inconsistent errors
across dimension on misreporting rates and estimation
variability for color (Experiment 1), orientation (Experi-
ments 1 and 2), and SF (Experiment 2). The effect of
consistency was found between orientation-misreporting
rate, (1, 13) = 11.2, p = .005, n,* = .05, and SF vari-
ability, A(1, 13) = 19.86, p = .0006, n,> = .02, but not
between orientation and color (all ps > .10; for detailed
results, see Supplementary Results, Table S4, and Fig.
S6 in the Supplemental Material).

Simulation of pooling of a joint population coding
can explain orientation and SF crowding. To test
whether the results of Experiment 2 could be explained
by a representation in which orientations and SFs were
bound, we compared the fit of two versions of a biologi-
cally plausible computational model that simulates a
population of neurons. In the joint-coding-model ver-
sion, the populations jointly code orientations and SFs
(Fig. 4; see also Supplementary Method 2 and Table S2 in
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Fig. 4. Simulation of population neural activity that jointly codes
for orientation and spatial frequency (SF) fitted to Experiment 2.
The model simulates the firing rates of three populations of neu-
rons with receptive-field locations, orientation preference, and SF
preference. Stimuli consisted of a target presented with two flankers
(asymmetrical flanker condition: 40/-70). A normalized Gaussian
function determined the population level to a stimulus as a function
of its relative distance (compared with other stimuli) from the cen-
ter of receptive field (spatial weights). Population neural activity in
response to each location was described by a bivariate probability
function with orientation preference (horizontal) and SF preference
(vertical). Orientation and SF arrangement is centered over the target-
orientation and SF values. Report of orientation is based on a single
population over the target location. Report of SF is based on pooling
over different locations, that is, pooling with receptive field centered
over each location.
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the Supplemental Material), whereas in the independent-
coding-model version, the populations separately code
orientations and SFs (Table S3 in the Supplemental Mate-
rial). The models rely on population-coding principles
and explain crowding as a weighted sum of target and
flanker feature values within a receptive field (Harrison &
Bex, 2015; van den Berg et al., 2010). We used a single
bivariate Gaussian distribution to simulate the joint cod-
ing of orientation and SF and two univariate normal dis-
tributions to simulate the separate representation of
orientation and color. The model assumes pooling over a
larger region of space for SF than orientation to explain
averaging in SF reports and misreporting in orientation
reports. This assumption is related to the fact that SF
judgments involve assessing the width and distance of
multiple cycles inside the Gabor patch (Robson &
Graham, 1981), whereas the orientation judgment may
involve assessing a more narrow region of space, for
example, a region with a higher aspect ratio (Goris,
Simoncelli, & Movshon, 2015). In the simulation, coding
precisions (the inverse of the standard deviation of the
Gaussian response function) and the standard deviation
of the Gaussian receptive field were directly responsible
for orientation-estimation variability and misreporting
rate, respectively. Therefore, these parameters were
determined on the basis of the fitting of the probabilistic
standard misreport model to the observed orientation
data. Both simulated models were fitted to the results of
Experiment 2 (both 7*s = .88). However, unlike in Experi-
ment 2, the independent-coding model showed no cor-
relation between orientation and SF (mean » = 0) and no
effect of consistency (Fig. 3e). The joint-coding model,
on the other hand, showed the same interdependent pat-
tern as the results of Experiment 2 (Fig. 3c), including the
correlation between orientation and SF (mean » = .23)
and the increase in the misreporting rate of orientations
and standard deviation of SF in consistent versus incon-
sistent trials (Fig. 3e). These results support the conclu-
sion that joint coding of orientation and SF underlies the
results of Experiment 2.

Discussion

In this study, we simultaneously characterized the pat-
tern of crowding errors within and between feature
dimensions. In three experiments, we demonstrated
variations in the pattern of crowding errors based on
the specific feature dimensions (orientation, color, and
SF) and their conjunctions. Crowding is more pro-
nounced for orientation than for color. Crowding
reflects misreporting a flanker orientation or color
instead of those of the target but averaging of their SFs.
The pattern of results was contingent on the feature-
dimension type but not the stimulus type: Observers
misreported the target orientation regardless of whether

the stimulus was a colored T or a grating. The distinct
pattern of crowding errors in each dimension suggests
a distinct representation for each feature dimension.

Crowding errors for orientation and SF were inter-
dependent, but those for orientation and color were
independent. These findings were shown by the analy-
sis of the joint distribution of feature-dimension errors
and trial-by-trial correlations. Moreover, comparison of
model parameters revealed higher orientation misre-
porting rates when SF and orientation errors were
toward the same flanker, but that was not the case for
orientation and color. These findings suggest that the
spatial integration that underlies crowding operates
after orientation is bound with SF but before it is bound
with color.

Not all features bebave the same
under crowding: errors within feature
dimensions

The present study challenges many models’ implicit
assumption that crowding operates in the same manner
across different feature dimensions (Pelli & Tillman,
2008; Whitney & Levi, 2011). Investigations supporting
this view had not tested for qualitative differences in
the pattern of errors across dimensions (Greenwood
et al., 2012; Poder & Wagemans, 2007; van den Berg
et al., 2007). Here, within the same display, we showed
both quantitative and qualitative differences in the pat-
tern of errors across different dimensions. First, orienta-
tion misreporting was 3 times more likely than color
misreporting, demonstrating that estimation of orienta-
tion is more susceptible to crowding than estimation of
color. Second, whereas orientation or color was misre-
ported, SFs were averaged in the SF dimension. This
variation between misreporting and averaging occurred
within the same stimuli and display (Gabor patch). Tt
has been proposed that observed errors may be con-
tingent on the target—flankers orientation distance
(Harrison & Bex, 2015; Mareschal, Morgan, & Solomon,
2010; but see Ester et al., 2015). Here, variation between
misreporting errors and averaging errors cannot be
explained by target-flanker distance. Observers misre-
ported orientation and averaged SF even when the dis-
tance in feature space was effectively the same (Figs.
S4b and S5). Thus, this study shows that crowding varies
as a function of the feature dimension being reported.

Crowding and feature binding: errors
between feature dimensions

Numerous studies have demonstrated observers’ failure
to correctly report the conjunction of feature dimensions
of peripheral items (e.g., color and shape), that is, mis-
binding errors, also known as illusory conjunctions
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(e.g., Dowd & Golomb, 2019; Vul & Rich, 2010; for a
review, see Di Lollo, 2012). According to popular views,
outside the focus of attention, independent sampling of
individual features occurs under location uncertainties
and therefore leads to the misbinding of features (Treis-
man & Schmidt, 1982; Vul & Rich, 2010). Although inves-
tigations of misbinding errors have often manipulated
attention (Dowd & Golomb, 2019; Vul & Rich, 2010),
many of these studies were conducted using a crowded
display, that is, stimuli spacing was below the critical
space of crowding (Pelli et al., 2004), suggesting that at
least some misbinding errors can be explained with the
same processes underlying crowding. However, whereas
crowding errors are characterized by errors within a
particular feature dimension (that can lead to either
averaging or misreporting), investigations of misbinding
errors in the visual periphery have focused on errors
between feature dimensions. For example, Vul and Rich
(2010) investigated misbinding errors by manipulating
top-down attention and analyzing error distributions in
the location space of categorical forced-choice reports
for color and shape (letter); therefore, they assessed
only errors between feature dimensions. Yet, until now,
no study had directly investigated the relations between
crowding errors (or errors within feature dimensions)
and misbinding errors (or errors between feature
dimensions).

In this study, by using dual continuous-estimation
reports of two simultaneously presented feature dimen-
sions, we were able to quantitatively assess errors due
to crowding both within and between feature dimen-
sions. The results reveal that in a crowded display, color
and orientation remain unbound, even when both
dimensions are jointly reported. Unlike color, SF remains
bound with orientation in crowding displays; observers
tended to misreport flanker orientation and average SF
with the same flanker. This contingency of binding errors
on the specific feature dimensions may explain why
some studies using a set of stimuli suggested that crowd-
ing reflects interference in feature binding (Pelli et al.,
2004; Poder & Wagemans, 2007), whereas another study
using a different set of stimuli suggested that crowding
follows feature binding (Greenwood et al., 2012).

Conclusion

This study directly links two mostly independent topics
of research—crowding and feature binding—and chal-
lenges conventional views in each of them. By testing
crowding both within and between feature dimen-
sions, we showed that it is not a uniform phenomenon:
It reflects different operations depending on the spe-
cific feature dimensions and their conjunctions. Both
the data analysis and our model simulation suggest

that crowding reflects spatial integration over neural
populations that encode both orientation and SF toge-
ther but color separately.
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