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Abstract  

 

Atypical metacognition has been suggested to underlie autistic phenotypes, given its role in 

social cognition and behavioural flexibility. However, no study has quantitatively assessed 

metacognitive abilities in autism. Here, we measured meta-uncertainty—the noise corrupting 

the estimates of one’s own decision uncertainty—in autism. In three experiments, autistic 

and non-autistic participants (N = 145) performed orientation categorisation tasks while 

simultaneously reporting their choice confidence. By independently manipulating each 

Bayesian component—sensory uncertainty, prior, and reward—and fitting a recently 

established process model, we assessed metacognitive abilities and their contingency on 

the Bayesian components while controlling for first-order decisions. Unlike non-autistic 

participants, autistic participants’ meta-uncertainty depended on which decision component 

was manipulated, and was lower than that of non-autistic participants specifically when 

decisions were adjusted for sensory uncertainty. These findings reveal that metacognition in 

autism is not generally reduced but rather enhanced for inferences that rely primarily on 

sensory information. 
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In acknowledgment of the ongoing discourse regarding terminology for individuals diagnosed 

with autism, we use "autistic individuals" and “non-autistic individuals” in line with recent 

conventions. 

 

Introduction 

 

Metacognition—the ability to monitor and evaluate one’s own mental states—plays a 

fundamental role in human cognition. It allows individuals to assess the reliability of their 

perceptions, guide learning, and adjust behaviour in uncertain environments1. Failures of 

metacognition have been implicated across a range of psychiatric and neurodevelopmental 

conditions2,3. In autism spectrum disorder (ASD)—marked by atypical social cognition, 

restricted and repetitive behaviour, and altered sensory processing4—impaired 

metacognition could contribute to alterations in both social reasoning and perceptual 

processing. However, despite intense interest, the nature of metacognition in autism remains 

unclear. Some accounts suggest a broad reduction in metacognitive ability5, while others 

point to more selective alterations—such as difficulties in metacognitive control6 or in tasks 

involving social cognition7. Previous research has primarily relied on the accuracy of 

confidence reports in memory, cognitive, or perceptual tasks (reviewed in ref.5). However, 

confidence reports reflect not only self-monitoring abilities but also general task performance 

and biases in confidence decision boundaries8–12, making it difficult to isolate genuine 

metacognitive differences. 

 

Here, we adopt a computational approach that directly formalises the processes underlying 

confidence13. We draw on Bayesian theories of perception and decision making14,15, 

according to which perceptual decision-making is formalised as an inference process that 

combines sensory uncertainty (i.e., likelihood), prior expectations (i.e., internal models), and 

reward (i.e., cost function) to compute a decision criterion that minimises expected cost14,15. 

Recent perceptual categorisation studies have shown that, contrary to longstanding 

views16,17, autistic individuals integrate all Bayesian components in perceptual decision-

making in a manner similar to non-autistic individuals18,19(Fazioli et al., in review). 

Nevertheless, it remains possible that atypicalities in perceptual decision-making arise at the 

level of metacognitive monitoring in autism. 

 

Across three experiments, autistic and non-autistic participants performed a perceptual 

categorisation task (first-order decision-making) while reporting their confidence (second-

order decision-making). By independently manipulating prior probabilities, reward structures, 



4 
 

and sensory uncertainty, we were able to ask whether—and how—distinct Bayesian 

components shape metacognitive ability in autism. Using a recently developed process 

model of metacognition  (the ‘CASANDRE’ or ‘confidence as a noisy decision reliability 

estimate’ model)13, which quantifies the noise corrupting internal estimates of uncertainty 

(hence, meta-uncertainty), we obtained a measure of metacognitive abilities that is 

independent of task difficulty and confidence bias. Our quantitative approach to 

metacognition reveals a qualitative divergence between autistic and non-autistic individuals 

in how Bayesian factors contribute to metacognitive ability. While for non-autistic 

participants, metacognitive abilities remained stable across experiments, autistics’ meta-

uncertainty varied depending on which Bayesian information biased first-order decisions. 

Specifically, they exhibited enhanced abilities when perceptual decisions relied on sensory 

information alone, relative to non-autistic participants, and their own performance during 

integration of prior or reward information.  

 

Results 

 

Participants (52 autistic and 93 non-autistic) categorised the orientation of grating stimuli 

(first-order task) and reported their confidence (second-order task) on every trial (Fig. 1a). In 

all experiments, to manipulate sensory uncertainty, we varied stimulus contrast across seven 

values. We manipulated information level regarding orientation category by randomly varying 

the stimulus orientation on each trial. In Task 1, for each trial, stimulus orientation was drawn 

from one of the two partially overlapping Gaussian distributions20–22, with means mA = −4 ̊ 

(Category A) and mB = 4  ̊(Category B) and standard deviations sA = sB = 5 ̊ (Fig. 1b, Task 

1). Participants reported simultaneously on the stimulus category (Category A vs. B) and 

confidence rating (4-point scale) by pressing one of eight keys, ranging from Category A 

highly confident to Category B highly confident (Fig. 1a). This simultaneous report prevented 

post-decision bias23.  

 

In Task 1, we tested how participants made second-order confidence decisions when first-

order perceptual decisions integrated prior (Experiment 1) or reward (Experiment 2) 

information with sensory uncertainty. In Experiment 1, we manipulated priors by explicitly 

varying category base rate probability across blocks. On a given block of trials, categories 

could appear with balanced (Category A = 50% and Category B = 50%) or unbalanced base 

rate probabilities (Category A = 25 % and Category B = 75%, or Category A = 75 % and 

Category B = 25%). In Experiment 2, we varied the points awarded for correct answers 

across three blocks of trials. In the unbiased reward block, each correct response was 
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awarded 2 points. In the two biased reward blocks, a correct response was awarded 3 points 

for one category and 1 point for the other. Specifically, in one biased block, category A was 

awarded 3 points, while in another biased reward block, category B was awarded 3 points.  

 

We implemented the CASANDRE model13 to compute metacognitive abilities from 

participants’ categorisation and confidence responses. From the model fits, we extracted 

Signal-Detection-Theory-like parameters, which provided estimates of first-order decisions—

sensitivity (i.e., d´) and decision criterion (i.e., c)9,11. Here, we expected decision criterion to 

shift toward the more likely or rewarded category (Fig. 1c, Task 1) and confidence to 

increase as orientations deviated from points of maximum overlap between categories (Fig. 

1d, Task 1).  

 

In Task 1, if prior or reward information were balanced, observers would achieve optimal 

performance by keeping the decision criterion at the intersection between the two 

categories, regardless of the stimulus uncertainty20,22. Therefore, we used an embedded 

category task (Task 2) in Experiment 3 to assess how participants performed second-order 

perceptual decisions when first-order decisions could take into account sensory uncertainty 

alone. In Task 2, orientations were drawn from two embedded Gaussian distributions with 

means mA = mB = 0 ,̊ and standard deviations sA = 3  ̊(Category A) and sB = 12  ̊(Category B) 

(Fig. 1b, Task 2). In this task, we expected the decision boundaries to shift outwards as the 

sensory uncertainty increased (Fig. 1c, Task 2). Hence, whereas in Task 1, decision shifts 

are driven by prior expectations or reward, in Task 2, decisions are driven by sensory 

uncertainty. Furthermore, we expected high confidence when category proportion favoured 

one category, and low confidence when the category proportions were similar (Fig. 1d, Task 

2).    

  

After applying exclusion criteria (see Methods, Outlier removal, and Table 1), the final 

sample included 42 non-autistic and 30 autistic participants in Experiment 1, 42 non-autistic 

and 27 autistic participants in Experiment 2, and 40 non-autistic and 26 participants in 

Experiment 3. A small number of additional participants were excluded from specific 

analyses (e.g., raw data, criterion), as detailed in the Methods.       
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Fig. 1. Task descriptions. (a) Sequence of events within a trial in Experiments 1, 2, and 3, respectively, 
manipulating base rate, reward, and sensory uncertainty. For each trial, participants simultaneously 
reported the Gabor’s category (Category A or Category B) based on its orientation, and their confidence 
level (high, medium-high, medium-low, low), using one of the eight keys, ranging from Category A highly 
confident to Category B highly confident. Stimulus contrast randomly varied between trials from a set of 
fixed values— 0.004, 0.016, 0.033, 0.093, 0.18, 0.36, and 0.72. (b) Stimulus orientation distributions for 
each category in Task 1 (Experiments 1 and 2) and Task 2 (Experiment 3). (c) Internal representation of 
the category distributions for each task. In Task 1, the sensitivity d´ represents the ability to separate the 
two categories, and the criterion c represents the adjustment of the decision criterion, from equal 
prior/reward (c1) to prior/reward that favours Category A (c2). In Task 2, the distributions with vivid colours 
represent the internal representations of the categories when the sensory noise is low, and the faded 

colours when the sensory noise is high.  represents the standard deviation of the internal representation 
of Category A (i.e., combination of internal—inverse of d´—and external noises), leading to a narrow 

distribution when sensory noise is low (), and a wider when sensory noise is high (). k1 represent the 
decision boundaries, shifting outwards when sensory noise is increasing (k2). (d) Second-order decisions 
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for each task. The vertical lines represent the confidence criterion cc, indicating the stimulus information 
(i.e., orientation) required to report a specific level of confidence. The dashed lines represent the cc for low 
confidence, and the solid line for high confidence. In Task 1, orientations arounds the category overlap 
(0°) are reported with low confidence for both categories, and orientations that deviate enough from the 
mean are reported with high confidence. In task 2, orientations around the means of the two categories 
(0°) are associated with high confidence for Category A. Deviation from both sides of the category means 
gives similar evidence for both categories, leading to low confidence for A and B. Extreme deviation of 
orientation leads to report B with high Confidence.    

 

1. Confidence ratings reflect sensory uncertainty for both groups  

 

First, we examined how decision and confidence varied with stimulus orientation (11 

orientations) and strength (7 contrast levels). Fig. 2 illustrates the proportion of reporting 

Category B (top row) and the mean of confidence report (bottom row), as a function of 

orientation, contrast level, and group. Values reported are across base rate and reward 

blocks for Task 1 (Fig. 2a-d). For Experiments 1 and 2, manipulating category base rate and 

reward (Fig. 2a-d, top row), category report was characterised by a sigmoid shape, with a 

proportion of reports for Category B increasing as the orientation became more clockwise. 

The sigmoid was steeper with high contrasts, reflecting that category report was more 

sensitive to orientation as contrast increased. In Experiment 3, which manipulated sensory 

uncertainty, we observed that the probability of reporting Category B (wider distribution) 

increased as orientations deviated from 0° (i.e., mean of the narrow distribution), and the 

categorisation became more sensitive to orientation as contrast increased (Fig. 2e-f, top 

row, see Supplementary Results and Supplementary Table 1, for the statistical 

analyses). Importantly, Fazioli et al., (2023, 2025)18,19 and Fazioli et al., (in review) 

conducted optimal observer analyses on the data and showed similar first-order decisions 

for autistic and non-autistic groups when comparing them to optimal observers.  

     

The variability in category reports is reflected in the confidence choices. Fig. 2a-f, bottom 

row illustrates how confidence increased as the probability of selecting a given category 

rose, with this relationship becoming sharper when stimulus strength increases (i.e., higher 

contrast). This consistent relationship between category and confidence choices indicates 

that participants can assess the reliability of their decision. To quantify how confidence 

choice was associated with stimulus information, we performed linear and quadratic mixed-

effect models with binned orientation and contrast as within-subject factors and group as a 

between-subject factor, on confidence ratings.  
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Fig. 2. Category and confidence report data for (a, b) Experiment 1, prior manipulation, (c, d) 
Experiment 2, reward manipulation, and (e, f) Experiment 3, sensory uncertainty manipulation. The 
top row represents the proportion of reporting Category B (y-axis) as a function of orientation (x-axis) and 
contrast (line colour). The bottom row illustrates the Mean of confidence (y-axis) as a function of 
orientation (x-axis) and contrast level (line colour). In (a-d), data show means across participants and 
base rate/reward blocks. In (e, f), data show means across participants. Error bars represent ±SE. The 
sample size consisted of 30 autistic and 41 non-autistic participants in (a, b), 27 autistic and 42 non-
autistic participants in (c, d-top), 27 autistic and 41 non-autistic participants in (c, d-bottom), 26 autistic 
and 39 non-autistic participants in (e, f-top), and 26 autistic and 40 non-autistic participants in (e, f-
bottom).  

   

Confidence depends on the stimulus value and strength in both groups  

The mixed-effect models investigating the effects of stimulus information (i.e., orientation, 

contrast) and group on confidence report included both linear and quadratic factors of 

orientation. Here, we focused on the overall V-shaped pattern and did not interpret linear 

terms separately.  

 

Prior manipulation (Experiment 1) 

In Experiment 1, as expected, confidence ratings were higher as contrast increased (t(29.12) 

= 5.70, p < .001), and this effect was more pronounced when orientations deviated from 0°, 

as indicated by the interaction between squared orientation and contrast (t(59960) = 6.91, p 

< .001). Participants reported overall higher confidence when base rate was unbalanced, 

compared to balanced (t(59960) = 2.82, p = .005) (see Supplementary Figure 2a), but 

overall confidence ratings did not significantly vary across groups (t(47.70) = -1.54, p = 

.130). All other main effects and interactions were not significant (see Supplementary 

Results and Supplementary Table 2).  

  

Reward manipulation (Experiment 2) 
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Similarly to Experiment 1, confidence ratings were higher as contrast increased (t(3.99) = 

4.75, p = .009), and this effect was more pronounced when orientations deviated from 0°, as 

indicated by the interaction between squared orientation and contrast (t(51110) = 5.52, p < 

.001). Participants were more confident in the unbalanced reward block than the balanced 

reward block (t(54860) = 2.96, p = .003) (see Supplementary Figure 2b). A significant 

three-way interaction between contrast, reward, and squared orientation (t(55200) = 2.53, p 

= .012) revealed that confidence ratings were more sensitive to stimulus value and strength 

when reward was unbalanced. However, these effects did not vary across groups, as all 

remaining effects, including the main effect of group (t(25.54) = -0.71, p = .763) and 

interactions, were not significant (see Supplementary Results and Supplementary Table 

2).  

 

Sensory uncertainty manipulation (Experiment 3) 

As in the categorisation task in Experiments 1 and 2, confidence ratings in Task 2 increased 

with contrast (t(5.01) = 5.65, p = .002). Importantly, although overall confidence ratings did 

not significantly vary across groups (t(15.42) = –0.10, p = .923), autistic participants’ 

confidence was more sensitive to stimulus value and strength, as indicated by a significant 

three-way interaction between group, squared orientation, and contrast (t(98,770) = 2.99, p = 

.003). All remaining effects and interactions were not significant (see Supplementary 

Results and Supplementary Table 2).   

 

These results indicate that in both groups in Task 1 (Experiment 1 and 2), confidence ratings 

were driven by stimulus strength (i.e., contrast), an effect that depended on stimulus value 

(i.e., orientation). Importantly, the relation between stimulus value and strength varied 

between autistic and non-autistic individuals when first-order decision boundaries were 

adjusted for sensory uncertainty alone, as in Task 2 (Experiment 3). However, such relations 

rely on average adjustment of confidence based on participants’ assessment of the strength 

of their first-order decision, but these relations do not reflect trial-to-trial variability in this 

assessment. Such variability, or meta-uncertainty, constitutes metacognitive abilities. To 

estimate each participant’s meta-uncertainty, we next fitted the CASANDRE models of 

confidence13 that quantify their estimation of their own decision reliability, separately for each 

experiment. 

 

2. Meta-uncertainty explains confidence reports in autism 
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According to the CASANDRE model, in perceptual decision-making, metacognitive ability in 

confidence report is determined by the observer’s reliability of their uncertainty estimate on 

their perceptual choice. This well-established model explains previous works using both 

Tasks A and B13,20. The model has two-stage processes (a first-order decision and a second-

order confidence), and it is well rooted in traditional signal detection theory. The model 

separates discrimination abilities and response bias from meta-cognitive abilities. By fitting 

the model to the individual data, we estimated for each participant the following parameters: 

sensitivity (s), decision criterion (cd), guess rate (g), confidence criterion (cc), and meta-

uncertainty (m). Hence, m provides a measure of estimation of internal noise that is 

independent of sensitivity and first-order decision. These parameters were optimised to 

minimise the negative log-likelihood and best capture participants’ behavioural data (see 

Methods, Computation model).  

 

2.1. Fit of meta-uncertainty model on category and confidence reports  

 

See Supplementary Methods for details about comparisons between different variants of 

the meta-uncertainty model, and between models with meta-uncertainty as a free parameter 

(meta-uncertainty mode) and identical models with meta-uncertainty fixed at 0 (restricted 

model). Results demonstrate that meta-uncertainty plays a role in confidence reports in all 

experiments (see Supplementary Results).  

 

The association of category and confidence reports with stimulus information was closely 

captured by the meta-uncertainty model in all experiments (see Supplementary Figure 3). 

To illustrate how the association between choice consistency and confidence was predicted 

by the meta-uncertainty model, Fig. 3 displays the mean confidence as a function of the 

proportion of reporting B and contrast level, with observed (points) and predicted (solid lines) 

data for individual subjects, for the prior (Fig. 3a-b), reward (Fig. 3c-d), and sensory 

uncertainty (Fig. 3e-f) experiments. For the prior and reward experiments, we observed a 

single association (‘U’ shape) between confidence and category report across contrast 

conditions. This behaviour—captured by the meta-uncertainty model, as the predicted 

behaviour closely fitted the data—demonstrates participants’ ability to assess the reliability of 

their decision. In the sensory uncertainty experiment, the more complex pattern of 

association between confidence and choice consistency was also captured by the meta-

uncertainty model. Here, we noticed a greater variance in this association for autistic 

participants, as illustrated in Fig. 3e-f, suggesting more nuanced mapping of confidence on 

choice consistency.   
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Fig. 3. Model fitting to category and confidence reports of a sampled participant from each group in each 

experiment. Mean of confidence (y-axis) as a function of proportion of reporting Category B (x-axis), contrast 

(colour), and group, for the prior (a, b), reward (c, d), and sensory uncertainty (e, f) experiments. Each subplot 

displays the observed and predicted behaviour for an individual participant. Data points illustrate choice 

behaviour, with size proportional to the number of trials. The solid lines represent the fit of the meta-uncertainty 

model using the maximum likelihood estimation method.  

 

2.2. Comparable first-order sensitivity  

 

We next analysed model-derived parameters reflecting first-order processes (i.e., sensitivity 

and decision criterion) in order to confirm that any differences in perceptual decisions 

between groups did not stem from atypical first-order decisions in autistic participants. Fig. 4 

illustrates perceptual sensitivity (top row) and decision criterion (bottom row) as a function of 

contrast level and group. In Fig. 4a-b, values are reported across base rate and reward 

blocks.    

 

Prior manipulation (Experiment 1)  

The ANOVA performed on sensitivity (s) revealed that sensitivity decreased with lower 

contrasts (F(1.52, 106.28) = 105.47, p < .001, p² = .60), indicating that the contrast variation 

was an effective manipulation of stimulus reliability (Fig. 4a, top row). None of the other 

effects were significant (see Supplementary Results), indicating that both groups exhibited 

a comparable perceptual sensitivity to the contrast levels.    
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Fig. 4. Signal detection parameters for (a) Experiment 1 manipulating prior, (b) Experiment 2 
manipulating reward, and (c) Experiment 3 manipulating sensory uncertainty. (a-c, top row) Perceptual 
sensitivity (s) as a function of contrast (x-axis) and group (line colour). The data are averaged across base 
rate in (a-top) and reward in (b-top). (a-c, bottom row) Decision criterion (cd) as a function of contrast (x-
axis) and group (line colour). The data displayed in (a, b, top row) are for the unbalanced base 
rate/reward blocks. All data points and bars show means across participants, and error bars represent 

±SE. The sample size consisted of 30 autistic and 42 non-autistic participants in (a), 27 autistic and 42 

non-autistic participants in (b, top row), 27 autistic and 41 non-autistic participants in (b, bottom row), 
and 27 autistic and 40 non-autistic participants in (c).  

 

Reward manipulation (Experiment 2) 

The ANOVA performed on s revealed that sensitivity decreased as contrast decreased 

(F(1.53, 102.80) = 72.51, p < .001, p² = .52) (Fig. 34, top row). Furthermore, sensitivity was 

higher in the unbalanced, compared to the balanced reward blocks (F(1, 67) = 8.83, p = 

.004, p² = .12) (see Supplementary Figure 4), and this effect occurred at all contrast 

levels, except 0.033, as indicated by the significant interaction between reward and contrast 

(F(1.31, 87.63) = 5.20, p = .017, p² = .07). The two groups exhibited a comparable 

sensitivity (F(1, 67) = 3.10, p = .083, p² = .04) and all remaining effects were not significant 

(see Supplementary Information). Therefore, the two groups exhibited similar sensitivity to 

the contrast manipulation.  

 

Sensory uncertainty manipulation (Experiment 3)  

Sensitivity declined with decreasing contrast (F(1.1, 65.94) = 64.69, p < .001, p² = .52) (Fig. 

4c, top row), and the two groups did not differ in sensitivity (F(1, 60) = 0.94, p = .338, p² = 

.02), across levels of contrast (F(1.1, 65.94) = 2.28, p = .134, p² = .04).   
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2.3. Comparable first-order decision criterion 

 

Prior manipulation (Experiment 1) 

The ANOVA performed on the decision criterion (cd) revealed a greater criterion shift for 

unbalanced, compared to balanced base rate (F(1, 70) = 124.56, p < .001, p²  = .64) (Fig. 

4a, bottom row). Furthermore, criterion shift increased with decreasing contrast (F(1.97, 

138.18) = 116.12, p < .001, p²  = .62), and this only when base rate was unbalanced, as 

indicated by the interaction between base rate and contrast (F(1.97, 138.18) = 116.12, p < 

.001, p²  = .62). Therefore, participants shifted their decision criterion toward the category 

with higher base rate probability as contrast decreased, and this in a comparable manner 

between groups, as the main effect of group was not significant (F(1, 70) = 2.11, p = .151, 

p²  = .03), as well as all other effects (see Supplementary Information). Autistic individuals 

performed the categorisation task similarly to non-autistics, by exhibiting similar sensitivity 

and integration of prior information during first-order decisions.   

 

Reward manipulation (Experiment 2) 

Similarly, participants shifted their decision criterion more in the unbalanced, compared to 

balanced, reward block (F(1, 69) = 19.61, p < .001, p² = .22) (Fig. 4b. bottom row). 

Furthermore, criterion shift increased as contrast decreased (F(1.43, 98.42) = 11.83, p < 

.001, p² = .15), and this in a greater manner when reward was unbalanced (F(1.43, 98.43) = 

11.83, p < .001, p² = .15), with no difference between groups (F(1, 69) = 0.11, p = .738, p² 

< .001). All other effects were not significant (see Supplementary Information).  

 

Sensory uncertainty manipulation (Experiment 3) 

The ANOVA performed on cd revealed that cd increased as contrast decreased (F(2.47, 

148.25) = 294.02, p < .001, p² = .83) (Fig. 4c, bottom row). The two groups did not differ in 

the overall shift of decision criterion (F(1, 60) = 0.53, p = .471, p² < .01), however non-

autistic participants tended to exhibit greater criterion shift in the contrast 0.004, as indicated 

by the significant interaction between group and contrast (F(2.47, 148.25) = 3.71, p = .019, 

p² = .06). This difference did not remain significant after correcting for multiple comparisons 

(t(60) = 1.88, p = .065).     

 

Overall, these results confirm that in each experiment, the first-order decision reflects the 

specific contribution of one Bayesian component—prior, reward, or sensory uncertainty— to 

perceptual inference. Moreover, autistic individuals performed the first-order task similarly to 
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non-autistics. They exhibited comparable sensitivity to the orientation distributions and 

integrated all Bayesian components to the same extent.   

 

3. Comparable confidence criterion across groups 

 

In each experiment, the model estimated three confidence criteria, cc, per participant, 

representing the amount of internal evidence a participant requires to report increasing 

levels of confidence. Specifically, cc-low marks the boundary between the low and medium-

low confidence keys, cc-medium between medium-low and medium-high, and cc-high 

between medium-high and high. A higher cc value indicates a more conservative threshold, 

meaning the participant requires stronger evidence to shift the confidence level. Fig. 5 

illustrates the change in confidence criterion as a function of confidence level and group. In 

Fig. 5a-b, values are reported across base rate and reward blocks.    

 

Prior manipulation (Experiment 1) 

The ANOVA performed on cc revealed that confidence criterion increased as confidence 

level increased (F(1.52, 106.47) = 91.68, p < .001, p² = .57)—where cc-high was 

significantly higher than cc-medium (t(71) = 10.1, p < .001), and cc-medium was higher than 

cc-low (t(71) = 4.59, p < .001) (Fig. 5a)—indicating that participants adopted more 

conservative thresholds when reporting higher confidence levels, demonstrating an 

appropriate use of the confidence rating scale. All remaining effects, including the effects of 

group (F(1, 70) = 3.55, p = .064, p² = .05) and base rate (F(1, 70) = 0.04, p = .850, p² < 

.01), were not significant (see Supplementary Results).  

 

 
Fig. 5. Confidence criterion for (a) Experiment 1 manipulating prior, (b) Experiment 2 manipulating 
reward, and (c) Experiment 3 manipulating sensory uncertainty. Confidence criterion (cc) as a function of 
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confidence level (x-axis) and group (bar colour). Confidence levels reflect the position of the criterion 
between two adjacent confidence keys: low/medium-low, medium-low/medium-high, and medium-
high/high, respectively. The data are averaged across base rates in (a) and reward in (b). Data points and 
bars show means across participants, and error bars represent ±SE. The asterisks represent the main 
effect of confidence level evaluated with ANOVAs, ***p < .001. The sample size consisted of 30 autistic 

and 42 non-autistic participants in (a), 27 autistic and 42 non-autistic participants in (b), and 27 autistic 

and 40 non-autistic participants in (c).  

 

Reward manipulation (Experiment 2) 

The ANOVA performed on the cc showed that confidence criterion was more conservative as 

confidence level increased (F(1.56, 104.32) = 53.15, p < .001, p² = .44) (Fig. 5b), with a 

greater confidence criterion for cc-high compared to cc-medium (t(68) = 8.00, p < .001), and 

cc-medium compared to cc-low (t(68) = 3.39, p = .004). Importantly, confidence criterion did 

not vary between groups (F(1, 67) = 1.62, p = .208, p² = .02), and reward (F(1, 67) = 3.14, p 

= .081, p² = .05). All other effects were not significant (see Supplementary Information).  

 

Sensory uncertainty manipulation (Experiment 3)   

The ANOVA performed on cc showed that confidence criterion increased with confidence 

level (F(1.22, 73.43) = 20.17, p < .001, p² = .25) (Fig. 5c), with a greater confidence 

criterion for cc-high compared to cc-medium (t(61) = 4.73, p < .001) and cc-low (t(61) = 4.73, 

p < .001), while cc-low and cc-medium did not differ (t(61) = 2.22, p = .091). The confidence 

criterion did not vary between groups (F(1, 60) = 0.50, p = .482, p² < .01), or between 

confidence levels and groups (F(1.22, 73.43) = 0.08, p = .833, p² < .01).         

 

Therefore, both groups similarly adjusted their confidence criterion by adopting a more 

conservative cc when reporting higher confidence in their categorisation in all experiments, 

demonstrating a similar use of the confidence rating scale.  

 

4. Meta-uncertainty in autism depends on first-order Bayesian source 

of uncertainty 

 

Finally, we analysed the model estimation of meta-uncertainty (m)—referring to the 

variability (uncertainty) in estimating the internal noise of the first-order decision variable— 

the estimate of perceptual metacognitive abilities (see Methods, Computation model, and 

Data analyses). A high m value is associated with higher meta-uncertainty, and hence, 

lower metacognitive ability. To investigate whether and how cognitive abilities differed 

between groups, and the type of Bayesian information integrated during first-order decision, 

we conducted an ANOVA across experiments, with Bayesian information (prior, reward, 
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sensory uncertainty) and group as factors, on the m. Fig. 6 illustrates meta-uncertainty as a 

function of experiment and group, and means are reported across base rate and reward 

blocks. To investigate whether prior or reward conditions modulated meta-uncertainty, we 

also performed an ANOVA for each experiment with base rate/reward condition (balanced, 

unbalanced) and group as factors on the m (see Supplementary Results and 

Supplementary Figure 7).  

 

The two groups did not differ in overall meta-uncertainty (F(1, 197) = 0.21, p = .648, p² < 

.01), but rather during specific experiments, as indicated by the significant interaction 

between experiment and group (F(2, 197) = 5.11, p = .007, p² = .05) (Fig. 6). In the sensory 

uncertainty experiment, the autistic group exhibited lower meta-uncertainty compared to the 

non-autistic group (t(78.8) = 2.39, p = .020, d = 0.59), while in the prior experiment, the 

autistic group tended to exhibit higher meta-uncertainty (t(32.3) = 1.92, p = .064, d = 0.49). 

The ANOVA performed on meta-uncertainty from the prior experiment alone, investigating 

the difference between groups and base rate blocks, supported this tendency, showing that 

the autistic group exhibited greater meta-uncertainty compared to the non-autistic group 

(F(1, 70) = 4.93, p = .030, p² = .07) (see Supplementary Results and Supplementary 

Figure 7). The two groups did not differ in meta-uncertainty in the reward experiment (t(58.8) 

= 0.35, p = .729). Importantly, meta-uncertainty in the non-autistic group did not vary 

between experiments (post-hoc comparisons showed all p > .05). In contrast, in the autistic 

group, meta-uncertainty in the sensory uncertainty experiment was lower compared to the 

prior experiment (t(197) = 4.03, p < .001) and tended to be lower compared to the reward 

experiment (t(197) = 2.24, p = .068). The difference between the prior and reward 

experiments was not significant (t(197) = 1.78, p = .179). Overall, the main effect of 

experiment was significant, (F(2, 197) = 4.57, p = .012, p² = .04, but differences in meta-

uncertainty between experiments were not significant after correcting for multiple 

comparisons: sensory uncertainty vs. prior, t(130) = 2.32, p = .065, sensory uncertainty vs. 

reward, t(125) = 1.75, p = .164, prior vs. reward, t(129) = 0.86, p = .389. 
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Fig. 6. Meta-uncertainty results per experiment. The meta-uncertainty m (y-axis) as a function of 
experiment (x-axis) and group (bar colour). The data is averaged across base rate/reward blocks in 
Experiments 1 and 2. Bars show means across participants, and error bars represent ±SE. The interaction 
between group and Bayesian component was evaluated using a between-subject ANOVA. The effects of 
group per experiment were evaluated using unpaired t-tests, with p-values corrected for multiple 
comparisons. ns: p ≥ .05, *.05 > p ≥ .01, **.01 > p ≥ .001. The sample size consisted of 30 autistic and 42 
non-autistic participants in Experiment 1, 27 autistic and 42 non-autistic participants in Experiment 2, and 
27 autistic and 40 non-autistic participants in Experiment 3.  

 

Because many participants participated in Experiment 3 after completing Experiment 1 

and/or 2, we aimed to control for a possible training effect in Experiment 3. Therefore, to 

directly investigate if participation in previous experiments could improve metacognitive 

abilities, we tested whether meta-uncertainty varied between and within groups as a function 

of familiarity with the confidence report (i.e., whether participants performed Experiment 1 or 

2 before completing Experiment 3). Results showed that in both groups, meta-uncertainty 

was the same between experienced and unexperienced participants (see Supplementary 

Results and Supplementary Figure 5), suggesting that group differences in meta-

uncertainty cannot be explained by experimental training.  

 

We conducted additional analyses to examine within-subject variability in meta-uncertainty 

between the prior and sensory-uncertainty experiments. The pattern of results indicates that 

within participants, non-autistics exhibit comparable meta-uncertainty between the two 

experiments, whereas autistics exhibit lower meta-uncertainty in the sensory uncertainty, 

compared to the prior experiment. These results support our general findings, demonstrating 

that meta-uncertainty in autistic participants depends on the Bayesian information integrated 

into the first-order decision (see Supplementary Results and Supplementary Figure 6). 

 

Discussion 
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Alterations in self-monitoring and evaluation have been proposed to play a key role in 

several neurodevelopmental conditions2,3, including autism24. However, it remains unclear 

whether atypical self-monitoring in autism arises from differences in metacognitive ability, 

confidence bias, or is confounded by differences in first-order decisions. Using a 

computational modelling approach, we independently quantified these processes and 

identified a fundamental divergence in the factors that determine metacognitive ability in 

autistic versus non-autistic individuals.  

 

Both autistic and non-autistic participants associated confidence with sensory uncertainty 

and adjusted their confidence criteria similarly. However, a key group difference emerged 

in meta-uncertainty—the computational estimate of uncertainty about internal noise. While 

meta-uncertainty remained stable in non-autistic participants, it varied in autistic participants 

depending on task manipulations of Bayesian components: metacognitive ability was 

enhanced (i.e., lower meta-uncertainty) when decisions relied solely on sensory evidence, 

but was reduced when prior information influenced the decision. Notably, group differences 

were specific to confidence reports. Perceptual sensitivity and decision criteria were 

comparable across groups, and both groups demonstrated similar integration of Bayesian 

information during first-order perceptual decision-making, as confirmed by comparisons with 

an ideal observer model in previous studies18,19 (Fazioli et al., in review). Together with the 

computational modelling results, these findings suggest atypical metacognitive abilities, even 

when sensory processing and first-order decision-making are indistinguishable. 

 

In non-autistic individuals, metacognitive ability is typically considered a domain-general 

capacity—stable across tasks and sensory modalities25–28. This consistency is also reflected 

in meta-uncertainty, which varies between individuals but is strongly correlated within 

individuals across sessions13. Our findings replicate this pattern: the average meta-

uncertainty in the non-autistic group remained consistent across tasks. By contrast, 

metacognitive monitoring abilities in autism are context dependent. Rather than exhibiting a 

global reduction, autistic participants appear to monitor their own decisions more accurately 

when those decisions depend directly on sensory evidence and less accurately when prior 

knowledge or reward information influences the decision process. This suggests a reduced 

weighting of non-sensory information in self-evaluation—an effect that corresponds with 

claims of attenuated contextual integration in autistic perception17,29. However, the present 

study, together with Fazioli et al.18, reveals that the attenuated effect of priors and context 

emerges at the metacognitive level, rather than at the level of first-order perceptual 

decisions17. 
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Metacognition and decision-making are dynamically coupled: confidence shapes learning, 

exploration, and behavioural adaptation30,31 and impacts subsequent choices and 

behaviour32,33. Thus, differences in metacognitive ability may partly explain downstream 

behavioural differences. This is particularly relevant to sensory-related reactions in autism—

an area that has received increasing attention in recent years—as atypical sensory reactivity, 

such as hypo- or hyper-responsiveness to sensory stimuli, has become recognized as a core 

feature of the autistic phenotype. While previous research has predominantly focused on 

sensory sensitivity and first-order decision-making16,17,34,35, and some studies have proposed 

differences in higher-level expectations and priors29,36,37, less attention was given to second-

order perceptual processes, and the mechanisms underlying sensory reactivity in autism 

remain poorly understood. Our findings suggest that metacognitive monitoring capabilities 

may play an important and previously underappreciated role in shaping how autistic 

individuals engage with sensory input. Specifically, the reduced noise in estimating 

knowledge based on sensory evidence demonstrates a more accurate monitoring of sensory 

information in autistic individuals, suggesting a stronger bias towards sensory information at 

the metacognitive level, and reduced bias towards contextual information.  These findings 

correspond to the claim of enhanced perception in autism38. However, we suggest that 

enhanced abilities emerge at the second-order level rather than first-order sensitivity.  

 

This bias towards sensory information may impact higher-order processes in decision-

making, such as monitoring decisions that integrate priors—as found in Experiment 1—and 

therefore adjusting decision-making strategies based on prior information. These results 

suggest that the accumulated evidence for reduced prior updating in autism during first-order 

decisions39,40 may not originate in atypical first-order inference, but rather reflect weaker 

metacognitive calibration under prior-driven decisions. In particular, if autistic individuals fail 

to accurately evaluate the reliability of perceptual decisions when these are mainly guided by 

priors, contextual changes may not elicit the change in decision confidence that signals the 

need for adapting decision strategies through prior updating. Furthermore, a reduced ability 

to update priors based on environmental changes can impair the capacity to form predictive 

models of the environment, leading to an overestimation of volatility. This interpretation 

aligns with recent theoretical accounts proposing overestimation of volatility as a key feature 

of perceptual processing in autism36,37. 

 

Moreover, the present findings highlight the promise of this mechanistic framework to 

independently quantify first- and second-order perceptual processes —a novel contribution 

in developmental condition research. This computational approach of metacognitive ability 
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can capture individual differences overlooked by traditional accuracy-based measures, 

offering a framework to link self-monitoring with neural, developmental, and behavioural 

outcomes.  

 

Finally, these results point to metacognition as a bridge for integrating perceptual processing 

and social accounts of autism. Metacognitive monitoring underpins one’s capacity to 

interpret not only one’s own mental states but also those of others; impairments in this 

domain may therefore contribute to challenges in communication and perspective-taking41–43. 

Understanding how metacognition operates in autism may thus illuminate the developmental 

relationship between introspection, self-awareness, and theory of mind. This approach is 

relevant to the study of a broader range of mental disorders, as alterations in metacognitive 

computations are considered to play a critical role in many forms of psychopathology44.  

 

Methods  

 

This study is based on data from a three-experiment project investigating perceptual 

decision-making in autism through categorisation of orientation tasks. The analyses on first-

order decisions (i.e., category choice) were the object of Fazioli et al. (2023, 2025)18,19 and 

Fazioli et al. (in review). The present study employs the same experimental procedure and 

task design as those articles.  

 

Participants  

This study included 52 adults diagnosed with autism (41 males and 11 females) and 93 non-

autistic individuals (18 males and 75 females). Participants chose between receiving 

monetary compensation (40 shekels/hour) or university credits (3 credits/hour). Autistic 

participants were recruited from a pool of participants regularly involved in research at the 

Department of Special Education. The two groups did not differ in age (t(105) = .55, p = .59), 

with a mean of m = 26.70 years old (se = 0.86) for the autistic group, and m = 27.30 (se = 

0.64) for the non-autistic group. Intellectual Quotient (IQ) was assessed using the Test of 

Non-Verbal Intelligence (TONI-4), which measures cognitive functioning independent of 

language skills45. The groups did not differ in IQ (t(60.3) = .90, p = .37), with a mean of m = 

99.3 (se = 11.40) for the autistic group, and m = 101.0 (se = 9.72) for the non-autistic group. 

Autistic traits were measured using the Autistic Quotient (AQ) questionnaire, and a t-test 

(t(64.9) = 6.97, p < .001) revealed a significantly higher AQ score for the autistic group, m = 

27.0 (se = 8.11), compared to the non-autistic group, m = 16.7 (se = 6.69). For each 
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participant, we maintained a minimum 24 hour-interval between experiments or experimental 

sessions.  

 

The autism diagnosis was confirmed using standardised clinical assessments, including the 

DSM-54, the Autism Diagnostic Interview (i.e., ADI-R52), and the Autism Diagnostic 

Observation Schedule (i.e., ASDOS-2). All participants completed the Community 

Assessment of Psychic Experiences (i.e., CAPE) and AQ questionnaires, in their preferred 

language (Hebrew or English), either during the clinical assessment or after the experimental 

sessions. Non-autistic individuals with a history of epilepsy or learning disorders were 

excluded from the study, as well as individuals diagnosed with autism who have known 

genetic disorders (e.g., Down syndrome).  

 

The three experiments received ethical clearance from the Institutional Review Board at the 

University of Haifa under the reference number 046/20, and participants provided written 

informed consent before every experimental session.  

 

Apparatus and Stimuli 

Apparatus and stimuli. Participants were set in a dimly lit room in front of a computer. A 

chinrest was used to set viewing distance at 57 cm, and participants responded via a 

keyboard. See Fazioli et al. (2025) for information about the monitor and display 

background. Experimental design, tasks, and stimuli (Fig. 1a) were based on Qamar et al. 

(2013)21, Denison et al. (2017)22, and Adler and Ma (2018)20. All stimuli were presented at 

the centre of the screen. Each trial began with a 500 ms fixation (black circle, 0.2° visual 

angle), followed by a 50 ms stimulus—a sinusoidal grating (Gabor patch) with a two-

dimensional Gaussian envelope (sd = 0.325°, 85% contrast, 3 cycles per degree). In each 

trial, the grating’s orientation was randomly drawn from one of two Gaussian distributions, 

corresponding to the two stimulus categories (Fig. 1a). Observers were asked to report from 

which category they thought the stimulus belonged to, based on its orientation, and how 

confident they were about their answer. Following stimulus onset, they reported both their 

category choice (Category A or B) and their level of confidence using a 4-point scale using a 

single key. The confidence rating scale ranged from high-confidence Category A to high-

confidence Category B (see Fig. 1a). To manipulate sensory uncertainty, we randomly varied 

stimulus contrast across trials, using seven fixed values (0.004, 0.016, 0.033, 0.093, 0.18, 

0.36, 0.72). The sensory uncertainty manipulation was used to 1) modulate the integration of 

prior and reward information into the perceptual decision in Experiments 1 and 2, and 

directly investigate the effect of sensory uncertainty on the decision boundaries in 
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Experiment 3, and 2) assess participants’ ability to evaluate the reliability of their decision 

across different sensitivity levels— an estimate of metacognitive ability.  

 

Categories. The stimulus categories were defined by continuous Gaussian orientation 

distributions. In Task 1 (Experiments 1 and 2), distributions were centred at mA = - 4° and mB 

= 4° (relative to the horizontal line), with standard deviations of sdA = sdB = 5° (Fig. 1b, Task 

1). In Task 2 (Experiment 3), we used embedded categories, a design allowing to test how 

changes in sensory uncertainty only influence perceptual decisions20,22,46. Here, distributions 

had identical means, mA = mB = 0° (horizontal), but differing standard deviations, sdA = 3° 

and sdB = 12° (Fig. 1b, Task 2). These parameters were selected to yield an optimal 

accuracy rate of approximately 80%. 

 

Blocks. Each experiment consisted of three blocks. In Experiment 1, we manipulated prior 

information by explicitly varying category base rate probabilities across blocks, with either 

balanced (B = 50% and A  = 50%) or unbalanced (B = 25% and A = 75% or B = 75% and A = 

25%) prior base rate between the two categories. In Experiment 2, we manipulated reward 

information by explicitly varying the number of points awarded for correct answers in each 

category across blocks, with balanced (B = 2 points and A = 2 points) or unbalanced (B = 1 

point and A = 3 points or B = 3 points and A = 1 point) reward value between categories. In 

both experiments, the balanced block was always performed second. The order of the 

unbalanced blocks was counterbalanced between participants. In Experiment 3, as the 

sensory uncertainty was the main manipulation, there was no difference between the three 

experimental blocks.  

  

Procedure and Design  

Trainings. Each experiment started with extensive category (40 trials) and confidence (40 

trials) training, with stimulus displayed for 300 ms at 100% contrast, see Fazioli et al. (2025) 

for more information.  

 

Main experiment. Participants were explicitly introduced to the variation between each 

experimental block (e.g., base rate for Experiment 1 and reward points for Experiment 2) 

with a verbal explanation. At the beginning of each block, they were informed of the new 

base rate/reward condition, and performed a 40-trial practice session in which they reported 

both category and confidence. After each response, a text displayed the chosen category, 

along with a correctness auditory feedback. We ensured that participants reached around 

70% accuracy during this practice session, reflecting that they were familiar enough with the 
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categories, the response keys, and the block conditions. Then, they completed the block of 

280 test trials.  

 

During the test blocks, no trial-to-trial feedback was given to prevent for feedback-based 

learning and ensure that decision boundaries were generated internally. However, 

participants received a summary of their categorisation accuracy every 50 trials to maintain 

engagement. In Experiments 2 and 3, participants also received information about the 

number of points earned in the previous 50 trials, and the total points accumulated 

throughout the experiment.  

 

To ensure participants understood the main manipulations (i.e., base rate or reward), a 

“check question” was randomly introduced. In Experiment 1, participants were asked to 

gamble an amount (0-99 cents) on the chances for the next stimulus to belong to a specific 

category, with the remaining money assigned to the other category. They were informed that 

their prediction accuracy would influence a bonus added to their original compensation. In 

Experiment 2, participants were asked about how many points they would earn for correctly 

categorising a stimulus from a given category. Additionally, they were informed that the 

accumulated number of points earned during the experiment would determine a bonus 

added to their original compensation. No comprehension checks were needed in Experiment 

3, so the same gambling question from Experiment 1 was used to maintain consistency. A 

reward system was also implemented to keep the same level of implication as in 

Experiments 1 and 2. Participants were informed that every correct answer was worth two 

points, and the total accumulated points would determine a bonus added to their 

compensation. In Experiments 1 and 2, participants completed 960 experimental trials over 

approximately 50 minutes. Preliminary data indicated that Experiment 3 was more 

susceptible to noise. Therefore, participants performed two separate sessions of 960 trials, 

with a minimum 24-hour gap between them.  

 

Data analyses  

We used MATLAB (R2024b) to fit the computational model to our data. Statistical analyses 

were conducted in R (4.4.1).  

 

Based on previous analyses, we assumed a symmetry in participants’ criterion shift between 

opposite base rate/reward18 blocks. Therefore, before implementing the model, we 

converted the responses from blocks where Category A had low base rate/reward, in order 

to combine the trials with the other unbalanced block for a single model fit. We reversed 

stimulus category and stimulus responses and multiplied the stimulus orientation by -1.    
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Outlier removal 

In all Experiments, participants with an accuracy below 0.6 at the three highest contrast 

levels and across blocks, were excluded from all analyses. In Experiment 3, we also 

removed participants with extreme criterion shifts (k > 100) or a sensory uncertainty ( > 

100) from all analyses18. We also excluded participants who used one key per category, 

indicating that they reported categorisation choice only, and participants who exhibited a 

meta-uncertainty that fell above the third quartile plus three times the interquartile range from 

all analyses. Additionally, we excluded participants showing an overall negative decision 

criterion from the decision criterion analyses. Finally, participants who did not have trials in 

all combinations of binned orientation and contrast were automatically excluded from the 

behavioural data analyses (category and confidence report).   

 

Computational model  

 

To estimate meta-cognitive abilities, we fitted a recent computational model (the 

‘CASANDRE’ or ‘confidence as a noisy decision reliability estimate’ model)13 that was shown 

to explain well behavioural confidence reports in previous studies using the same basic 

stimuli and task13. The model estimates meta-uncertainty, a metacognitive parameter 

reflecting how precisely an individual can assess their decision reliability. The model 

assumes that on each trial, an observer estimates the reliability of their decision (makes a 

confidence decision, Vc) by comparing the absolute distance between the decision variable 

Vd (i.e., strength of sensory evidence) and the contrast-specific decision criterion cd, and 

normalising it by 𝜎̂𝑑, the estimate of the dispersion of Vd (Eq. 1). Here, Vd is derived from a 

normal distribution centred on the true stimulus value, with a variability given by sensory 

noise (i.e., inverse of sensitivity). The absolute difference between Vd and Vc reflects the 

strength of the decision, with a higher value indicating stronger evidence. Therefore, Vc can 

be explained as the strength of evidence for the choice, scaled by how noisy the internal 

system is perceived to be. Indeed, this framework assumes that observers don’t have 

access to their actual sensory uncertainty and estimate for every decision. This estimate 𝜎̂𝑑 

is modelled as a random variable drawn from a lognormal distribution with a mean of d (i.e., 

the true sensory noise), and a trial-to-trial variability of m. Finally, confidence rating was 

obtained by comparing Vd to a fixed confidence criterion cc. Therefore, the noise when 

estimating decision reliability mainly comes from variability in assessing sensory uncertainty, 

also called meta-uncertainty m. A larger m indicates greater variability in estimating internal 
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noise, and therefore, lower metacognitive abilities. Additionally, a guess rate (g) parameter is 

included to account for random response.  

                                                        𝑉𝑐 =  
|𝑉𝑑−𝑐𝑑|

𝜎̂𝑑
                                                           (1) 

For each participant in each contrast level, the model estimates sensitivity (s) and decision 

criterion (cd). Additionally, for each participant across all contrast levels, the model estimates 

guess-rate (g), confidence criterion (cc), and meta-uncertainty (m).   

 

To apply the model, we modelled sensitivity using a Naka-Rushton function, defined by a 

maximum sensitivity Rmax, a semi-saturation constant C50, and a slope n (Eq. 2). Therefore, 

the model contained 15 free parameters: GR, meta-uncertainty (m), three sensory 

parameters (Rmax, C50, n), seven decision criteria (cd), and three confidence criteria (cc, one 

less than the number of confidence levels). Each parameter was optimised to minimise 

negative log-likelihood, using the MATLAB fmicon function. The fitting procedure was 

structured in three nested loops, and the best fit was selected based on the lowest log-

likelihood.  

 

                                                   𝑠 =  
𝑅𝑚𝑎𝑥∗ 𝐶𝑛

𝐶𝑛+ 𝐶50
𝑛                                                                  (2) 

  

 

The starting values of GR, m, Rmax, C50, n, and cc were respectively: 0.01, 0.5, 1.5, 0.3, 2, 1. 

We defined strict lower and upper bounds for each parameter to ensure valid estimates: 0 < 

GR < 0.1; 0.1 < m< 5; 0.005 < Rmax < 5, 0.5 < n < 5; 0.005 < C50 < 1; 0 < cc < 10.    

 

In Task 1, the starting values of the decision criteria cd were set at 0. For the trials from 

unbalanced blocks (i.e., unequal reward or prior between categories), the boundaries were -

20 < cd < 20. For the trials from the balanced block (i.e., equal reward or prior between 

categories), the boundaries were -0.002 < cd < 0.002, as the criterion was not expected to 

vary when sensory evidence decreased, in order to reduce the number of free parameters to 

12.   

 

In Task 2, the observer sets two decision boundaries to distinguish between the narrow 

category A and the broad category B (Fig. 1c, Task 2). To reduce the number of free 

parameters, we assumed these boundaries to be symmetrical around zero degrees. 

Therefore, we estimated the lower value of cd for each contrast, and multiplied it by minus 
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one to estimate the upper value. The boundaries were set at -20 < cd < 0, and the starting 

values were set from -5 (high contrast) to -11 (low contrast). Therefore, similar to the 

unbalanced trials of Task 1, we used 15 free parameters for modelling data from Task 2.  

 

Model comparison  

We started by fitting the original model to the data. In that version, sensitivity was estimated 

separately for each contrast level (i.e., 7 values), using a signal-detection-theory-like model. 

For Task 1, the model did not conditionally constrain cd, and for Task 2, both boundaries for 

cd were estimated. This resulted in a total of 19 free parameters for Task 1, and 26 for Task 

2. To reduce the number of free parameters and minimise the risk of overfitting, we tested 

three alternative model variants, where estimates for sensitivity and decision criterion were 

reduced. The model described above, using the Naka-Rushton function to estimate 

sensitivity, demonstrated the best fit (see Supplementary Results). The results reported in 

the main text are based on the parameters extracted from this model. The description and 

comparison between models are provided in the Supplementary Methods, Supplementary 

Results, and Supplementary Figure 1.  

 

Statistical analyses 

 

Behavioural data  

 Categorisation task  

For each experiment, we investigated how the category choice varied across contrast and 

orientations. For Experiments 1 and 2, we conducted 2 x 7 x 11 x 2 linear mixed-effect 

models with group (non-autistic, autistic) as a between-subject factor, and contrast (0.004, 

0.016, 0.033, 0.093, 0.18, 0.36, 0.72), orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10), and 

base rate / reward (balanced, unbalanced) as within-subject factors, on the proportion of 

reporting Category B. For Experiment 3, we conducted a 2 x 7 x 11 linear and quadratic 

mixed-effect model to account for the V-shaped pattern of response. The model included 

group (non-autistic, autistic) as a between-subject factor, contrast (0.004, 0.016, 0.033, 

0.093, 0.18, 0.36, 0.72), and orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10) as within-subject 

factors, as well as the squared orientation factor, and was performed on the proportion of 

reporting Category B (see Supplementary Results, Supplementary Table 1) 

 

 Confidence task  

We investigated how the confidence report was influenced by the different manipulations for 

each experiment. In Experiments 1 and 2, we conducted 2 x 7 x 11 x 2 linear and quadratic 

mixed-effect models with group (non-autistic, autistic) as a between-subject factor, and 
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contrast (0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 0.72), orientation (-10, -8, -6, -4, -2, 0, 2, 4, 

6, 8, 10), and base rate/reward block (balanced, unbalanced) as within-subject factors, on 

the confidence report. A squared orientation factor was added in each model to account for 

the V-shaped behaviour. In Experiment 3, we conducted a 2 x 7 x 11 linear mixed-effect 

model with group (non-autistic, autistic) as a between-subject factor, and contrast (0.004, 

0.016, 0.033, 0.093, 0.18, 0.36, 0.72), and orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10) as 

within-subject factors, on the confidence report.  

 

Sensitivity and decision criterion  

We used the parameters from the Naka-Rushton fitting to estimate the sensitivity si for each 

level of contrast Ci for each participant (Eq. 3). In Experiments 1 and 2, we performed 2 x 2 x 

7 mixed-design ANOVAs with group (non-autistic, autistic) as a between-subject factor, and 

prior/reward (balanced, unbalanced) and contrast (0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 

0.72) as within-subject factors on the s and cd. In Experiment 3, we performed 2 x 7 mixed-

design ANOVAs with group (non-autistic, autistic) as a between-subject factor, and contrast 

(0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 0.72) as a within-subject factor on the s and cd. 

 

                                                   𝑠𝑖 =  
𝑅𝑚𝑎𝑥∗ 𝐶𝑖

𝑛

𝐶𝑖
𝑛+ 𝐶50

𝑛                                                                (3) 

 

Confidence criterion  

Because there were four confidence levels, there were three confidence-level boundaries: 

1=between low and mid-low, 2 = between mid-low to mid-high, 3 = between mid-high and 

high). To investigate the shift in confidence criterion cc, we performed a 2 x 3 x 2 mixed-

design ANOVA with group (non-autistic, autistic) as a between-subject factor and 

confidence-level boundaries (1, 2, and 3) and base-rate block (balanced, unbalanced) as 

within-subject factors on the cc. In Experiment 2, we performed a similar 2 x 3 x 2 mixed-

design ANOVA with group, confidence-level boundary, and reward block (balanced, 

unbalanced). In Experiment 3, we performed a 2 x 3 mixed-design ANOVA with group (non-

autistic, autistic) as a between-subject factor and confidence level (1, 2, 3) as a within-

subject factor on the cc.  

 

Meta-uncertainty  

To investigate whether meta-uncertainty differed between groups, and whether the type of 

Bayesian information involved in perceptual decisions affected the metacognitive abilities, 

we performed a 2 x 3 between-subjects ANOVA with group (non-autistic, autistic) and 
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experiment (prior, reward, sensory uncertainty) as between-subject factors, on the meta-

uncertainty.  

 

To control for potential improvement in metacognitive abilities over time among participants 

who completed multiple experiments, we directly tested whether meta-uncertainty in 

Experiment 3 varied as a function of familiarity with the task, by conducting a 2 x 2 between-

subject ANOVA one the meta-uncertainty in Experiment 3, with group (non-autistic, autistic) 

and previous participation (with, without) as between-subject factors. See Supplementary 

Results and Supplementary Figure 4.  

 

To investigate the difference between groups and block conditions (prior, reward) in 

metacognitive abilities for Experiments 1 and 2, we conducted for each experiment a 2 x 2 

mixed-design ANOVA with group (non-autistic, autistic) as a between-subject factor, and 

prior/reward block (balanced, unbalanced) as a within-subject factor on the m. The results 

are described in the Supplementary Results and Supplementary Figure 6.    

 

Guess rate  

In Experiments 1 and 2, we performed a 2 x 2 mixed-design ANOVAs with group (non-

autistic, autistic) as a between-subject factor, and prior/reward block (balanced, unbalanced) 

as a within-subject factor on g. In Experiment 3, we conducted an unpaired t-test on g with 

group (non-autistic, autistic) as the between-subject factor. The results are displayed in the 

Supplementary Information.    

 

Significant effects from the ANOVAs were further investigated using paired and unpaired t-

tests as appropriate to elucidate the nature of the observed differences. Bonferroni 

corrections were applied to control for multiple comparisons. Effect sizes were calculated 

using partial eta square (p²) for ANOVAs and Cohen’s standardised mean difference (d) for 

t-tests.  

 

 

Data availability  

The datasets supporting the conclusions of this article are available in the Open Science 

Framework (OSF) repository: https://osf.io/kp7ca/ 

 

Code availability  
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The code supporting these findings will be available on the Open Science Framework (OSF) 

repository: https://osf.io/kp7ca/ 
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Table 

  

 Overall n Category 

report 

Confidence 

report 

Sensitivity Decision 

criterion 

Confidence 

criterion 

Meta-

uncertainty 

Guess rate 

Prior 

experiment 

nautistic = 34 

 nnon-autistic = 49 

nautistic = 30 

 nnon-autistic = 41 

nautistic = 30 

 nnon-autistic = 41 

nautistic = 30 

 nnon-autistic = 42 

nautistic = 30 

 nnon-autistic = 42 

nautistic = 30 

 nnon-autistic = 42 

nautistic = 30 

 nnon-autistic = 42 

nautistic = 30 

 nnon-autistic = 42 

Reward 

experiment 

nautistic = 32 

 nnon-autistic = 48 

nautistic = 27 

 nnon-autistic = 42  

nautistic = 27 

 nnon-autistic = 41  

nautistic = 27 

 nnon-autistic = 42  

nautistic = 27 

 nnon-autistic = 41  

nautistic = 27 

 nnon-autistic = 42  

nautistic = 27 

 nnon-autistic = 42  

nautistic = 27 

 nnon-autistic = 42  

Sensory 

uncertainty 

experiment 

nautistic = 34 

 nnon-autistic = 44 

nautistic = 26 

 nnon-autistic = 39  

nautistic = 26 

nnon-autistic = 40  

nautistic = 27 

 nnon-autistic = 40  

nautistic = 27 

nnon-autistic = 40  

nautistic = 27 

 nnon-autistic = 40  

nautistic = 27 

 nnon-autistic = 40  

nautistic = 27 

nnon-autistic = 40  

Table 1. Description of the sample size in the three experiments for the overall sample, and statistical analyses 

performed on each estimate: category report, confidence report, sensitivity, decision criterion, confidence 

criterion, meta-uncertainty, guess rate.        
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Supplementary methods 

 

Model fitting 

 

For each experiment, we performed four model fittings, varying the method for estimating 

sensitivity to reduce the number of free parameters, while preserving a good fit to the data.    

 

Original model  

In the original model, stimulus sensitivity si was estimated separately for each contrast (i.e., 

7 levels), using a Signal Detection Theory (SDT)-based model of choice and confidence. 

Each si was treated as a free parameter, optimised via maximum likelihood to best predict 

the participant’s decision variable Vd. To reduce the number of free parameters, we 

implemented alternative models in which sensitivity was fitted with parametric functions 

during the optimisation of Vd.  

 

Linear model  

In the linear model, changes in sensitivity across contrast were modelled with a linear 

function for each participant. Here, Ci represents stimulus contrast, a the slope, and b the 

intercept (Eq. 1). Two free parameters (a and b) were estimated per participant.  

                                                            𝑠𝑖 = 𝑎 ∗ 𝐶𝑖 + 𝑏                                                         (1)      

 

Gaussian model  
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Visualisation of sensitivity revealed that changes did not follow a strict linear progression. 

We used a Gaussian cumulative distribution function (CDF) to capture the nonlinear 

behavior (Eq. 2). In this equation,  represents the inflection point (i.e., center of the curve), 

 the spread (i.e., slope), and  the cumulative normal distribution. Two free parameters 

were estimated ( and  ) per participant.  

                                                            𝑠𝑖 = 𝛷(
𝐶𝑖− 𝜇

𝜎
)                                                               (2)          

 

Naka-Rushton model  

Finally, to account for saturation of sensitivity at high contrast levels, we used a Naka-

Rushton function to model sensitivity (Eq. 3). Here, Ci
 is the stimulus contrast, Rmax the 

asymptotic maximum sensitivity, C50 the contrast at which sensitivity reaches half of Rmax, 

and n the slope parameter controlling the steepness of the function.   

 

                                                              𝑠𝑖 =  
𝑅𝑚𝑎𝑥∗ 𝐶𝑖

𝑛

𝐶𝑖
𝑛+ 𝐶50

𝑛                                                               (3) 

 

 

Statistical analyses 

 

Model comparison 

We fitted all four models (i.e., original, linear, Gaussian, Naka-Rushton) to each experiment’s 

datasets. Each fit produced one set of parameters for the meta-uncertainty model (meta-

uncertainty as a free parameter), and another set for the reduced model (meta-uncertainty 

fixed at 0). For each model, the negative likelihood (NLL) was computed to quantify how the 

model predicted the observed data. From the NLL values, we calculated the corrected 

Akaike Information Criterion (AICc) to evaluate model quality while accounting for the 

number of free parameters (k) and trials (n) (Eq. 4). For each model, we performed t-tests on 

the AICc to assess whether the model including the meta-uncertainty parameter 

outperformed the model without it.  

                                                      𝐴𝐼𝐶𝑐 = (2𝑘 + 2𝑁𝐿𝐿) +  
2𝑘∗(𝑘+1)

𝑛−𝑘−1
                                        (4)  

To compare the different variants (i.e., linear, Gaussian, Naka-Rushton) in each experiment, 

we computed for each participant the difference between the AICc of the original model and 

the AICc of each variant. High values in the resulting AICc indicate a better fit to the data. 

We then performed mixed-design ANOVAs on the AICc to find the best-fitting model, with 

Model (linear, Gaussian, Naka-Rushton) as a within-subject factor, and group (autistic, non-

autistic) as a between-subject factor. In Experiments 1 and 2, the factor base rate/reward 

block (balanced, unbalanced) was added to the ANOVAs. Finally, we performed one-sample 

t-tests on AICc values corresponding to the model variant with the highest AICc. This 
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tested whether the mean AICc was significantly greater than 0, indicating that the selected 

variant provided a better fit than the original model.    

 

After selecting the variant model that outperforms the original model based on the ΔAICc, we 

evaluated, for the selected variant, whether including the meta-uncertainty as a free 

parameter improved model fit. For each experiment, we calculated the AICc gain, defined as 

the difference between the AICc of the restricted model and the AICc of the meta-uncertainty 

model, where a positive value indicates that including the meta-uncertainty as a free 

parameter improves model fit. We excluded participants with extreme AICc gain values (> 3 

sd): one autistic participant in Experiment 1, one non-autistic participant in Experiment 2, 

and three autistic and four non-autistic participants in Experiment 3, resulting in a final 

sample of 71, 68, and 55 participants, respectively. Then, we conducted one-sample t-tests 

against 0 to test whether models including the meta-uncertainty models systematically 

outperformed the restricted models, separately for each experiment.     

 

Supplementary results 

 

Model comparison 

We first compared the model fits for the different variants of the contrast sensitivity function 

(i.e., linear, Gaussian, Naka-Rushton) across experiments. Supplementary Figure 1 

illustrates AICc as a function of model fitted per groups. In Task 1 (plots a-b), values are 

reported across base rate and reward blocks.    

 

Prior experiment  

The ANOVA performed on the AICc revealed a main effect of model F(1.39, 97.38) = 35.93, 

p < .001, p²  = .34, with the Naka-Rushton model being a better predictor than both the 

Gaussian (t(77) = 5.40, p < .001) and the linear (t(77) = 7.24, p < .001) models 

(Supplementary Figure 1). Furthermore, the main effect of base rate was significant (F(1, 

70) = 4.99, p = .029, p²  = .07), indicating that the models predicted better the data from the 

balanced, compared to the unbalanced blocks. The interaction between model and base rate 

was significant (F(1.96, 137.01) = 5.72, p = .004, p²  = .08), and caused by a main effect of 

base rate only in the linear model (t(76) = 3.63, p < .001), compared to the Gaussian (t(76) = 

1.34, p = .182) and Naka-Rushton (t(76) = 0.92, p = .359) models. All other effects were not 

significant, including the main effect of group (F(1, 70) = 1.08, p = .303, p²  = .02), the 

interaction between group and model (F(1.39, 97.38) = 0.99, p = .348, p²  = .01), and the 

three-way interaction (F(1.96, 137.01) = 2.53, p = .084, p²  = .04). The one-sample t-test 

performed on AICc of the Naka-Rushton model revealed no significant difference from 0 

(t(71) = 0.49, p = .628), that this model did not outperform the original one. Therefore, the 

Naka-Rushton model better fitted the data from the prior experiment.  
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Supplementary Figure 1. Comparison between models. AICc (y-axis) represents the difference of 

AICc between the original and the variant (i.e., Gaussian, linear, Naka-Rushton) models (x-axis), such as 

AICc = AICoriginal – AICvariant. Higher values indicate better model fit, and values above 0 indicate that the 

variant outperformed the original model. The comparison between models was performed for the (a) prior, 

(b) reward, and (c) sensory uncertainty experiments. In (a), the data is averaged for each model and 

group, across base rate, and the sample size consisted of 30 autistic and 42 non-autistic participants. In 

(b), the data is averaged for each model and group, across reward block, and the sample size consisted 

of 27 autistic and 42 non-autistic participants. In (c), the data is averaged for each model, and the sample 

size consisted of 27 autistic and 40 non-autistic participants.    

   

Reward experiment  

The ANOVA revealed a main effect of model (F(1.53, 102.56) = 51.63, p < .001, p²  = .44), 

where the Naka-Rushton model was a better predictor than both the linear (t(69) = 8.24, p < 

.001) and Gaussian (t(69) = 6.94, p < .001) models. The main effect of reward was 

significant (F(1, 67) = 42.05, p < .001, p²  = .39), with models overall fitting better on the 

data from the balanced, compared to the balanced block. The main effect of group was not 

significant (F(1, 67) = 0.76, p = .386, p²  = .01), but the interaction between group and 

model was significant (F(1.53, 102.56) = 3.69, p = .039, p²  = .05), and caused by a better fit 

of the Gaussian (t(67) = 2.44, p = .018) and the Naka-Rushton (t(67) = 2.04, p = .045) 

models for the autistic, compared to the non-autistic group. The difference between groups 

was not significant in the linear model (t(67) = 0.92, p = .356). The interaction between 

model and reward block was significant (F(1.76, 117.6) = 19.59, p < .001, p²  = .23), and 

caused by a larger difference of AICc between reward block in the linear (t(68) = 6.64, p < 

.001) and Gaussian (t(68) = 4.03, p < .001), compared to the Naka-Rushton (t(68) = 2.13, p 

= .037) model. The interaction between group and reward block (F(1, 67) = 0.62, p = .436, 

p²  < .01) and the three-way interaction (F(1.76, 117.6) = 1.44, p = .242, p²  = .02) were not 

significant. The one-sample t-test performed on AICc of the Naka-Rushton model was 

significantly greater than 0 (t(68) = 2.39, p = .020), indicating that this model provided a 

better fit to the data than the original one. Therefore, the Naka-Rushton model better fitted 

the data from the reward experiment and outperformed the original model.  

    

Sensory uncertainty experiment  
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The ANOVA performed on AICc revealed no significant main effects of model (F(1.37, 

81.98) = 1.71, p = .194, p²  = .03), group (F(1, 60) = 0.01, p = .922, p²  < .01), and no 

significant interaction between model and group (F(1.37, 81.98) = 0.67, p = .463, p²  = .01).    

 

These results indicate that the model estimating sensitivity using a Naka-Rushton function 

provided the best fit to the data in Experiments 1 and 2. In Experiment 3, all variants of the 

model performed similarly; however, for consistency, we analysed the Naka–Rushton fitted 

parameters in all subsequent analyses. After selecting this variant, we performed model 

comparisons between the model with meta-uncertainty as a free parameter (meta-

uncertainty mode) and the identical with meta-uncertainty fixed at 0 (restricted model), 

revealed that, for Experiments 1 and 2, the model with the meta-uncertainty component 

outperformed the restricted model (t(70)=9.35, p < .001; t(67) = 8.43, p < .001, respectively), 

and this for both group (p < .001 for each group). However, in Experiment 3, the model with 

meta-uncertainty outperformed the restricted model for the non-autistic group (t(32) = 3.50, p 

= .001), but not the autistic group (t(21) = 0.15, p = .880). This indicates that, in the sensory 

uncertainty experiment, meta-uncertainty does not significantly explain the variance in the 

confidence behaviour in the autistic participants, suggesting a lower meta-uncertainty in the 

autistic group. The remaining analysis focuses on the fitted parameters of the meta-

uncertainty model with the Naka-Rushton function to estimate sensitivity.  

 

Category report 

 

Prior experiment  

The linear mixed-effect model performed on the proportion of reporting Category B revealed 

a significant main effect of orientation (t(197.40) = 28.24, p < .001), indicating that the 

proportion of reporting B increased as stimulus orientation became more clockwise. The 

main effect of contrast was not significant (t(325.20) = 1.42, p = .156), but the significant 

interaction between contrast and orientation (t(10520) = 22.18, p < .001) indicated a greater 

effect of orientation as contrast increased. Finally, the three-way interaction between 

orientation, contrast, and base rate was significant (t(10510) = 3.25, p = .001), indicating that 

the interaction between orientation and contrast was stronger when the base rate was 

unbalanced. All remaining main effects and interactions were not significant, including the 

main effect of group (t(149.30) = 0.13, p = .898) and all interactions associated with this 

factor (see Supplementary Table 1).  

       

 

Reward experiment  

The main effect of orientation on the probability of report category B was significant 

(t(225.70) = 30.85, p < .001), as well as the interaction between contrast and orientation 

(t(10170) = -21.80, p < .001). All remaining effects were not significant, including the main 
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effect of group (t(144.90) = 0.04, p = .969) and all interactions with this factor (see 

Supplementary Table 1).   

 

Sensory uncertainty experiment  

The quadratic model performed on the proportion of reporting B revealed a main effect of 

contrast (t(46.57) = 4.41, p < .001), indicating that the proportion of reporting B increased 

with higher contrasts. The main effect of squared orientation was significant (t(114.00)= 

25.79, p < .001), demonstrating the ‘V’ shape of the category report, with an increase of 

proportion of reporting B as orientations deviate from 0°. The interaction between the 

squared orientation and contrast was significant (t(4528) = -18.96, p < .001), demonstrating 

that the proportion of reporting B flattened as contrast decreased. All other effects were not 

significant (see Supplementary Table 1).  

 

These results indicate that the category report was more sensitive to orientation as contrast 

increased, without differences between groups, in all three experiments.  

 

 

Confidence report  

The results from the linear and quadratic mixed-effect models investigating the confidence 

report in each experiment are reported in Supplementary Table 2. The main effects of base 

rate and reward conditions on confidence reports are illustrated in Supplementary Figure 2.  

 

 

Supplementary Figure 2. Effect base rate/reward on the confidence report. 

Mean confidence report (y-axis) for each base rate/reward condition (x-axis) and 

group (bar colour), for (a) the prior and (b) reward experiments. The data is 

averaged across orientations and contrasts. Bars show means across participants, 

and error bars represent ±SE.The sample size consisted of 30 autistic and 41 non-

autistic participants in (a) and 27 autistic and 41 non-autistic participants in (b). 
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Consistency in category and confidence report 

Supplementary Figure 3 illustrates how category and confidence reports were predicted by 

the meta-uncertainty model. The figure displays proportion of reporting Category B (top row) 

and mean of confidence report (bottom row) as a function of stimulus orientation and the 

two extreme contrast values, for the prior (a, b), reward (c, d), and sensory evidence 

experiments (e, f). Here, we plotted observed and model predicted data for an individual 

subject in each subplot. The sigmoid, ‘V’, and ‘W’ shapes observed in Fig. 2 for high 

contrasts—characteristic of category and confidence reports that are sensitive to stimulus 

information—were reproduced by the model predictions, and fitted properly with the 

observed data. For low contrasts, the fitted lines flattened, reproducing well the reduced 

association of category and confidence reports with stimulus information. These 

observations demonstrate that the pattern of category and confidence reports was well 

captured by the meta-uncertainty model. Importantly, in the sensory uncertainty experiment, 

we noticed that autistic individuals exhibited a more detailed association between reports 

and stimulus information, as illustrated by the steeper curve in Task 2 for the autistic 

participant, suggesting a greater association between confidence and choice consistency. 

Therefore, participants’ behaviour was well captured by the meta-uncertainty in all 

experiments.  

  

 

Supplementary Figure 3. Model fitting for a sampled participant from each group in each experiment. 

Proportion of reporting Category B (top row, y-axis) and mean of confidence report (bottom row, y-axis) as a 

function of stimulus orientation (x-axis) and the two extreme contrast values, for the prior (a, b), reward (c, d), 

and sensory evidence experiments (e, f). Each subplot displays the observed and predicted behaviour for an 

individual participant. Data points illustrate choice behaviour, with size proportional to the number of trials. The 

solid lines represent the fit of the meta-uncertainty model using the maximum likelihood estimation method. The 

model was fit to all data simultaneously for each experiment and group.   
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Perceptual sensitivity  

Prior experiment  

The ANOVA performed on the sensitivity (d’) revealed no significant main effects of group 

(F(1, 70) = 0.77, p = .782, p² < .01), base rate (F(1, 70) = 1.67, p = .201, p² = .02), and no 

significant interactions between group and base rate (F(1, 70) = 0.23, p = .630, p² < .01), 

group and contrast (F(1.52, 106.28) = 1.06, p = .336, p² = .02), base-rate and contrast 

(F(1.44, 101.01) = 0.51, p = .545, p² < .01), and between contrast, group and base rate 

(F(1.44, 101.01) = 0.28, p = .684, p² < .01).  

 

Reward experiment  

The ANOVA performed on the sensitivity revealed no significant interactions between group 

and reward (F(1, 67) = 2.01, p = .161, p² = .03), group and contrast (F(1.53, 102.80) = 3.04, 

p = .066, p² = .04), and between group, reward and contrast (F(1.31, 87.63) = 1.86, p = 

.174, p² = .03). The main effect of reward was significant (F(1, 67) = 8.83, p = .004, p² = 

.12) and is illustrated in Supplementary Figure 4, reporting sensitivity as a function of 

contrast and reward block, across groups.   

 

 

 

Supplementary Figure 4. Difference in sensitivity between reward 

conditions. Sensitivity as a function of contrast (x-axis) and reward 

block (line color). Data points and bars show means across 

participants and groups, and error bars represent ±SE. The sample 

size consisted of 27 autistic and 41 non-autistic participants.    

 

 

Decision criterion  
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Prior experiment  

The ANOVA performed on the decision criterion revealed no significant interactions between 

group and base rate (F(1, 70) = 2.11, p = .151, p²  = .03), group and contrast (F(1.97, 

138.18) = 2.62, p = .077, p²  = .04), and between group, base rate and contrast (F(1.97, 

138.18) = 2.62, p = .077, p²  = .04).  

 

Reward experiment  

The interaction between group and reward (F(1, 69) = 0.11, p = .738, p² < .01), group and 

contrast (F(1.43, 98.42) = 0.07, p = .868, p² < .01), and the triple interaction (F(1.43, 98.43) 

= 0.07, p = .868, p² < .01), were not significant.  

 

Confidence criterion 

Prior experiment  

The interaction between group and base rate (F(1, 70) = 0.10, p = .758, p² < .01), group 

and confidence (F(1.52, 106.47) = 0.22, p = .743, p² < .01), base rate and confidence 

(F(1.62, 113.53) = 2.154, p = .130, p² = .03), and the triple interaction (F(1.62, 113.53) = 

2.53, p = .095, p² = .04) were not significant.  

 

Reward experiment  

The interactions between group and reward (F(1, 67) = 0.95, p = .335, p² = .01), group and 

confidence (F(1.56, 104.32) = 0.47, p = .581, p² < .01), reward and confidence (F(2, 134) = 

2.10, p = .126, p² = .03), and the three-way interaction (F(2, 134) = 1.61, p = .203, p² = .02) 

were not significant.  

 

Guess rate  

Prior experiment  

The model integrated a measure of guess rate (g) to account for random reporting. The 

ANOVA performed on g showed a main effect of group (F(1, 70) = 5.93, p = .017, p²  = .08), 

with a higher g for the autistic group, t(50.8) = 2.32, p = .024. The main effect of base rate 

(F(1, 70) = 0.04, p = .850, p² < .01), and the interaction between base rate and group (F(1, 

70) = 0.33, p = .569, p² < .01) were not significant.    

 

Reward experiment  

The ANOVA on g revealed that g was not significantly different across groups (F(1, 67) = 

0.11, p = .746, p² < .01 ) and reward (F(1, 67) = 1.27, p = .264, p² = .02), and the 
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interaction between group and reward was not significant (F(1, 67) = 0.43, p = .517, p² < 

.01).   

 

Sensory uncertainty experiment  

The unpaired t-test investigating the difference in g between groups was not significant 

(t(55.81) = 0.84, p = .403).    

 

 

 

Differences in meta-uncertainty within and between groups in the sensory 

uncertainty experiment (Experiment 3), based on familiarity with the task 

 

Supplementary Figure 5 illustrates meta-uncertainty in Experiment 3 (sensory uncertainty 

manipulation) as a function of previous participation in other experiments and group. Six 

autistic and 16 non-autistic participants did not participate in the prior or reward experiments 

before completing the sensory uncertainty experiment. Sixteen autistic and 18 non-autistic 

participants completed at least one experiment prior to the sensory uncertainty experiment.  

The ANOVA performed on meta-uncertainty revealed no main effects of previous 

participation (F(1, 52) = 0.03, p = .875, p² < .01), nor interaction between previous 

participation and group (F(1, 52) = 0.03, p = .854, p² < .01) (see Supplementary Figure 5). 

These results indicate that participants who completed Experiments 1 and 2 before 

completing Experiment 3 do not exhibit different metacognitive abilities compared to 

participants who performed the task for the first time. As most of the autistic participants—

compared to non-autistics—performed Experiments 1 and 2 before completing Experiment 

3, these results indicate that enhanced metacognitive abilities in the autistic group cannot be 

associated with training of confidence abilities. The main effect of group was not significant 

(F(1, 52) = 2.35, p = .133, p² = .05).   
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Supplementary Figure 5. Meta-uncertainty in Experiment 3 (sensory 

uncertainty manipulation) based on familiarity with the task. Meta-

uncertainty (y-axis) as a function of previous participation—whether 

participants completed Experiments 1 or 2 (I.e., with) before participating in 

Experiment 3—and group (bar colour). Bars show means across participants, 

and error bars represent ±SE. The sample size consisted of 22 autistic and 

34 non-autistic participants.  

 

 

 

Within-subject differences in meta-uncertainty across sensory uncertainty and 

prior experiments 

The main analyses of meta-uncertainty showed that non-autistic participants exhibited 

consistent meta-uncertainty across experiments, whereas autistic participants demonstrated 

lower meta-uncertainty (i.e., enhanced metacognition) when the first-order decision 

integrated sensory uncertainty alone, and greater meta-uncertainty (i.e., reduced 

metacognition) when prior information was integrated into the inference process. To test 

whether this pattern appeared at an individual level, we examined how within-subject meta-

uncertainty varied between the two experiments for each group. The sample included 

participants who completed both experiments (13 autistic and 12 non-autistic). 

Supplementary Figure 6 illustrates meta-uncertainty in the sensory uncertainty experiment 

as a function of meta-uncertainty in the prior experiment, per group. Meta-uncertainty values 

in the prior experiment are averaged across base rate blocks for each participant.  

Due to the small sample size, participants’ behaviour was examined qualitatively by 

visualizing trends. Here, the trends aligned with the previous findings: the interaction 

suggests a steeper relation between the meta-uncertainty values in the two experiments for 
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the non-autistic group. In Supplementary Figure 6, the regression line for the non-autistic 

group follows the y = x diagonal, indicating similar meta-uncertainty across experiments. For 

the autistic group, the line falls below the diagonal, reflecting higher meta-uncertainty in the 

prior compared to the sensory uncertainty experiment within the same participants. These 

observations support our previous findings, indicating that, unlike non-autistic participants, 

metacognitive performance in autistic participants depends on the first-order Bayesian 

source of uncertainty. 

   

 

Supplementary Figure 6. Within-subject comparison of meta-uncertainty across 

the prior and the sensory uncertainty experiments. Meta-uncertainty from the 

sensory uncertainty experiment (y-axis) as a function of meta-uncertainty from the prior 

experiment (x-axis) per group (dot and line colour). Each dot represents meta-

uncertainty values from both experiments for one participant. Regression lines 

(coloured lines) were fitted per group using linear models, and shaded areas represent 

the 95% confidence intervals around the regression lines. The sample size consisted of 

13 autistic and 12 non-autistic participants 

 

 

 

Meta-uncertainty analyses per group and block condition  

 

Supplementary Figure 7 illustrates meta-uncertainty as a function of base rate/block 

condition and group.   

 

Prior experiment 
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The ANOVA performed on the m revealed a main effect of group (F(1, 70) = 4.93, p = .030, 

p² = .07), with the autistic group exhibiting a higher m compared to the non-autistic group 

(see Supplementary Figure 7). The main effect of base rate (F(1, 70) = 0.04, p = .848, p² < 

.01) and the interaction between base rate and group (F(1, 70) = 1.31, p = .256, p² = .02) 

were not significant. Therefore, autistic individuals showed reduced metacognitive abilities 

across prior conditions.         

 

 

Supplementary Figure 7. Analyses of meta-uncertainty per block condition. The 

meta-uncertainty m (y-axis) as a function of block condition (x-axis) and group (bar 

colour) for the (a) prior and (b) reward experiments. Bars show means across 

participants, and error bars represent ±SE. In (b), the main effect of reward was 

evaluated using a mixed-design ANOVA. **.01 > p ≥ .001. The sample size consisted of 

30 autistic and 42 non-autistic participants (a) and 27 autistic and 42 non-autistic 

participants (b). 

 

Reward experiment  

The ANOVA performed on m revealed no significant difference between groups (F(1, 67) = 

0.10, p = .758, p² < .01). The main effect of reward was significant (F(1, 67) = 8.48, p = 

.005, p² = .11), with a higher m when reward was unbalanced compared to balanced, and 

the interaction between reward and group was not significant (F(1, 67) = 0.10, p = .758, p² < 

.01) (see Supplementary Figure 7b). Therefore, the autistic group exhibited similar 

metacognitive abilities compared to the non-autistic group when reward information was 

included in their perceptual decisions. Surprisingly, reward information influenced meta-

uncertainty, and this in a similar manner between the two groups.   
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Supplementary Table  

 

Supplementary Table 1. Result of the linear and quadratic mixed-effect models investigating 

category report for each experiment. The table reports the degree of freedom (df), t-value (t), and p-

value (p) for each predictor (main effects and interactions). Orientation2 indicates the squared predictor. 

The asterisks represent the significance levels, *p < .05, **p <.01, ***p < .001.  

Prior experiment  

Predictor  df t p 

Intercept  148.50 36.16 < .001*** 

Orientation 197.40 28.24 < .001*** 

Contrast 325.20 -1.42 .156 

Group 149.30 -0.13 .898 

Base rate  285.30 -0.25 .803 

Orientation x Contrast 10520.00 -22.18 < .001*** 

Orientation x Group 197.90 0.79 .433 

Contrast x Group 325.70 1.33 .186 

Orientation x Base rate  10510.00 -0.44 .661 

Contrast x Base rate  286.20 1.07 .284 

Group x Base rate  10520.00 0.26 .792 

Orientation x Contrast x Group 10510.00 1.03 .301 

Orientation x Contrast x Base rate  10510.00 3.25 .001** 

Orientation x Group x Base rate  10510.00 -0.71 .478 

Contrast x Group x Base rate  10510.00 -0.78 .434 

Orientation * Contrast * Group * Base rate  10510.00 0.22 .823 

Reward experiment 

Predictor df t p 

Intercept  144.00 37.72 < .001*** 

Orientation 225.70 30.85 < .001*** 

Contrast 139.70 0.35 .725 

Group 144.90 0.04 .969 

Reward  1430.00 0.69 .494 

Orientation x Contrast 10170.00 -21.80 < .001** 

Orientation x Group 226.80 -1.06 .289 

Contrast x Group 141.10 -0.80 .425 

Orientation x Reward  10170.00 0.78 .433 

Contrast x Reward  10160.00 -0.89 .375 

Group x Reward  1438.00 0.01 .990 
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Orientation x Contrast x Group 10170.00 1.01 .311 

Orientation x Contrast x Reward  10170.00 -0.34 .731 

Orientation x Group x Reward  10170.00 -0.96 .339 

Contrast x Group x Reward  10170.00 0.10 .920 

Orientation x Contrast x Group x Reward  10170.00 1.01 .315 

Sensory uncertainty experiment 

Predictor df t p 

Intercept 27.68 3.48 .002** 

Orientation 177.40 -1.08 .281 

Contrast 46.57 4.41 < .001*** 

Group 27.68 1.03 .313 

Orientation2 114.00 25.79 < .001*** 

Orientation x Contrast 4528.00 0.29 .776 

Orientation x Group 177.40 2.62 .010** 

Contrast x Group 46.56 -1.24 .222 

Contrast x Orientation2 4528.00 -18.96 < .001*** 

Group x Orientation2 114.00 -1.60 .112 

Group x Orientation x Contrast 4528.00 -1.15 .250 

Group x Orientation2 x Contrast 4528.00 1.67 .096 

 

 

Supplementary Table 2. Result of the quadratic mixed-effect models investigating confidence 

report for each experiment. The table reports the degree of freedom (df), t-value (t), and p-value (p) for 

each predictor (main effects and interactions). Orientation2 indicates the squared predictor. The asterisks 

represent the significance levels, *p < .05, **p <.01, ***p < .001.  

Prior experiment  

Predictor  df t p 

Intercept  47.69 12.02 < .001 

Orientation 39660.00 -0.01 .996 

Contrast 29.12 5.70 < .001*** 

Group 47.70 -1.54 .130 

Base rate  59960.00 2.82 .005** 

Orientation2 777.50 4.14 .770 

Orientation x Difficulty  59970.00 -0.97 .333 

Orientation x Group 39170.00 -0.01 .999 

Contrast x Group  28.17 -1.38 .179 

Orientation x Base rate  59970.00 0.72 .470 

Contrast x Base rate  59960.00 -1.58 .114 
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Group x Base rate  59960.00 -1.70 .090 

Contrast x Orientation2 59960.00 6.91 < .001 

Group x Orientation2 781.20 0.80 .872 

Base rate x Orientation2 59960.00 -0.28 .783 

Orientation x Contrast x Group 59970.00 3.00 .003** 

Orientation x Contrast x Base rate 59970.00 0.85 .394 

Orientation x Group x Base rate 59970.00 -0.35 .727 

Contrast x Group x Base rate 59960.00 1.21 .226 

Contrast x Group x Orientation2 59960.00 1.22 .224 

Contrast x Base rate x Orientation2 59960.00 0.03 .979 

Group x Base rate x Orientation2 59970.00 1.28 .200 

Orientation x Contrast x Group x Base 

rate 

59970.00 -1.78 .075 

Orientation2 x Contrast x Group x Base 

rate x  

59960.00 -0.13 .894 

Reward experiment 

Predictor df t p 

Intercept  25.54 10.17 .398 

Orientation 6440.00 -0.02 .981 

Contrast 3.99 4.75 .009** 

Group 25.54 -0.71 .763 

Reward  54860.00 2.96 .003** 

Orientation2 30.42 0.69 .746 

Orientation x Difficulty  54860.00 0.74 .457 

Orientation x Group 6369.00 0.02 .988 

Contrast x Group  3.90 -1.84 .139 

Orientation x Reward  54830.00 2.67 .008** 

Contrast x Reward  55090.00 0.32 .751 

Group x Reward  54850.00 -0.84 .402 

Contrast x Orientation2 51110.00 5.52 < .001*** 

Group x Orientation2 30.41 -0.05 .977 

Reward x Orientation2 54880.00 -1.64 .101 

Orientation x Contrast x Group 54890.00 -0.41 .685 

Orientation x Contrast x Reward  54850.00 -2.03 .042* 

Orientation x Group x Reward  54840.00 -2.03 .043* 

Contrast x Group x Reward  55070.00 -0.46 .646 

Contrast x Group x Orientation2 55080.00 1.29 .198 

Contrast x Reward x Orientation2 55200.00 2.53 .012* 

Group x Reward x Orientation2 54880.00 0.05 .959 
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Orientation x Contrast x Group x Reward  54850.00 1.84 .065 

Orientation2 x Contrast x Group x Reward  55190.00 -1.10 .269 

Sensory uncertainty experiment  

Predictor df t p 

Intercept 15.42 11.84 < .001*** 

Orientation 22460.00 -0.01 .995 

Contrast 5.01 5.65 .002** 

Group 15.42 -0.10 .923 

Orientation2 801.20 0.25 .941 

Orientation x Contrast 98760.00 -0.74 .457 

Orientation x Group 22610.00 0.01 .993 

Contrast x Group 5.00 -1.73 .145 

Contrast x Orientation2 98760.00 -1.54 .125 

Group x Orientation2 801.20 -0.01 .997 

Group x Orientation x Contrast 98760.00 -0.14 .886 

Group x Orientation2 x Contrast 98770.00 2.99 .003** 

 

 

 

 


