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Abstract

Atypical metacognition has been suggested to underlie autistic phenotypes, given its role in
social cognition and behavioural flexibility. However, no study has quantitatively assessed
metacognitive abilities in autism. Here, we measured meta-uncertainty—the noise corrupting
the estimates of one’s own decision uncertainty—in autism. In three experiments, autistic
and non-autistic participants (N = 145) performed orientation categorisation tasks while
simultaneously reporting their choice confidence. By independently manipulating each
Bayesian component—sensory uncertainty, prior, and reward—and fitting a recently
established process model, we assessed metacognitive abilities and their contingency on
the Bayesian components while controlling for first-order decisions. Unlike non-autistic
participants, autistic participants’ meta-uncertainty depended on which decision component
was manipulated, and was lower than that of non-autistic participants specifically when
decisions were adjusted for sensory uncertainty. These findings reveal that metacognition in
autism is not generally reduced but rather enhanced for inferences that rely primarily on

sensory information.
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In acknowledgment of the ongoing discourse regarding terminology for individuals diagnosed
with autism, we use "autistic individuals" and “non-autistic individuals” in line with recent

conventions.

Introduction

Metacognition—the ability to monitor and evaluate one’s own mental states—plays a
fundamental role in human cognition. It allows individuals to assess the reliability of their
perceptions, guide learning, and adjust behaviour in uncertain environments'. Failures of
metacognition have been implicated across a range of psychiatric and neurodevelopmental
conditions?3. In autism spectrum disorder (ASD)—marked by atypical social cognition,
restricted and repetitive behaviour, and altered sensory processing*—impaired
metacognition could contribute to alterations in both social reasoning and perceptual
processing. However, despite intense interest, the nature of metacognition in autism remains
unclear. Some accounts suggest a broad reduction in metacognitive ability®, while others
point to more selective alterations—such as difficulties in metacognitive control® or in tasks
involving social cognition’. Previous research has primarily relied on the accuracy of
confidence reports in memory, cognitive, or perceptual tasks (reviewed in ref.%). However,
confidence reports reflect not only self-monitoring abilities but also general task performance
and biases in confidence decision boundaries®'2, making it difficult to isolate genuine

metacognitive differences.

Here, we adopt a computational approach that directly formalises the processes underlying
confidence'®. We draw on Bayesian theories of perception and decision making'*s,
according to which perceptual decision-making is formalised as an inference process that
combines sensory uncertainty (i.e., likelihood), prior expectations (i.e., internal models), and
reward (i.e., cost function) to compute a decision criterion that minimises expected cost'5.
Recent perceptual categorisation studies have shown that, contrary to longstanding
views'®17 autistic individuals integrate all Bayesian components in perceptual decision-
making in a manner similar to non-autistic individuals'®'®(Fazioli et al., in review).
Nevertheless, it remains possible that atypicalities in perceptual decision-making arise at the

level of metacognitive monitoring in autism.

Across three experiments, autistic and non-autistic participants performed a perceptual
categorisation task (first-order decision-making) while reporting their confidence (second-

order decision-making). By independently manipulating prior probabilities, reward structures,
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and sensory uncertainty, we were able to ask whether—and how—distinct Bayesian
components shape metacognitive ability in autism. Using a recently developed process
model of metacognition (the ‘CASANDRE’ or ‘confidence as a noisy decision reliability
estimate’ model)'3, which quantifies the noise corrupting internal estimates of uncertainty
(hence, meta-uncertainty), we obtained a measure of metacognitive abilities that is
independent of task difficulty and confidence bias. Our quantitative approach to
metacognition reveals a qualitative divergence between autistic and non-autistic individuals
in how Bayesian factors contribute to metacognitive ability. While for non-autistic
participants, metacognitive abilities remained stable across experiments, autistics’ meta-
uncertainty varied depending on which Bayesian information biased first-order decisions.
Specifically, they exhibited enhanced abilities when perceptual decisions relied on sensory
information alone, relative to non-autistic participants, and their own performance during

integration of prior or reward information.

Results

Participants (52 autistic and 93 non-autistic) categorised the orientation of grating stimuli
(first-order task) and reported their confidence (second-order task) on every trial (Fig. 1a). In
all experiments, to manipulate sensory uncertainty, we varied stimulus contrast across seven
values. We manipulated information level regarding orientation category by randomly varying
the stimulus orientation on each trial. In Task 1, for each trial, stimulus orientation was drawn
from one of the two partially overlapping Gaussian distributions?®-22, with means ma = —4°
(Category A) and mg = 4° (Category B) and standard deviations sa = sg = 5°(Fig. 1b, Task
1). Participants reported simultaneously on the stimulus category (Category A vs. B) and
confidence rating (4-point scale) by pressing one of eight keys, ranging from Category A
highly confident to Category B highly confident (Fig. 1a). This simultaneous report prevented

post-decision bias?.

In Task 1, we tested how participants made second-order confidence decisions when first-
order perceptual decisions integrated prior (Experiment 1) or reward (Experiment 2)
information with sensory uncertainty. In Experiment 1, we manipulated priors by explicitly
varying category base rate probability across blocks. On a given block of trials, categories
could appear with balanced (Category A = 50% and Category B = 50%) or unbalanced base
rate probabilities (Category A = 25 % and Category B = 75%, or Category A =75 % and
Category B = 25%). In Experiment 2, we varied the points awarded for correct answers

across three blocks of trials. In the unbiased reward block, each correct response was



awarded 2 points. In the two biased reward blocks, a correct response was awarded 3 points
for one category and 1 point for the other. Specifically, in one biased block, category A was

awarded 3 points, while in another biased reward block, category B was awarded 3 points.

We implemented the CASANDRE model' to compute metacognitive abilities from
participants’ categorisation and confidence responses. From the model fits, we extracted
Signal-Detection-Theory-like parameters, which provided estimates of first-order decisions—
sensitivity (i.e., d") and decision criterion (i.e., ¢)*'". Here, we expected decision criterion to
shift toward the more likely or rewarded category (Fig. 1c, Task 1) and confidence to
increase as orientations deviated from points of maximum overlap between categories (Fig.
1d, Task 1).

In Task 1, if prior or reward information were balanced, observers would achieve optimal
performance by keeping the decision criterion at the intersection between the two
categories, regardless of the stimulus uncertainty?*??. Therefore, we used an embedded
category task (Task 2) in Experiment 3 to assess how participants performed second-order
perceptual decisions when first-order decisions could take into account sensory uncertainty
alone. In Task 2, orientations were drawn from two embedded Gaussian distributions with
means ma = mg = 0°, and standard deviations sa = 3°(Category A) and sg = 12°(Category B)
(Fig. 1b, Task 2). In this task, we expected the decision boundaries to shift outwards as the
sensory uncertainty increased (Fig. 1¢, Task 2). Hence, whereas in Task 1, decision shifts
are driven by prior expectations or reward, in Task 2, decisions are driven by sensory
uncertainty. Furthermore, we expected high confidence when category proportion favoured
one category, and low confidence when the category proportions were similar (Fig. 1d, Task
2).

After applying exclusion criteria (see Methods, Outlier removal, and Table 1), the final
sample included 42 non-autistic and 30 autistic participants in Experiment 1, 42 non-autistic
and 27 autistic participants in Experiment 2, and 40 non-autistic and 26 participants in
Experiment 3. A small number of additional participants were excluded from specific

analyses (e.g., raw data, criterion), as detailed in the Methods.
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Fig. 1. Task descriptions. (a) Sequence of events within a trial in Experiments 1, 2, and 3, respectively,
manipulating base rate, reward, and sensory uncertainty. For each trial, participants simultaneously
reported the Gabor’s category (Category A or Category B) based on its orientation, and their confidence
level (high, medium-high, medium-low, low), using one of the eight keys, ranging from Category A highly
confident to Category B highly confident. Stimulus contrast randomly varied between trials from a set of
fixed values— 0.004, 0.016, 0.033, 0.093, 0.18, 0.36, and 0.72. (b) Stimulus orientation distributions for
each category in Task 1 (Experiments 1 and 2) and Task 2 (Experiment 3). (c) Internal representation of
the category distributions for each task. In Task 1, the sensitivity d” represents the ability to separate the
two categories, and the criterion ¢ represents the adjustment of the decision criterion, from equal
prior/reward (c1) to prior/reward that favours Category A (cz). In Task 2, the distributions with vivid colours
represent the internal representations of the categories when the sensory noise is low, and the faded
colours when the sensory noise is high. o represents the standard deviation of the internal representation
of Category A (i.e., combination of internal—inverse of d’—and external noises), leading to a narrow
distribution when sensory noise is low (o1), and a wider when sensory noise is high (o2). k1 represent the
decision boundaries, shifting outwards when sensory noise is increasing (kz). (d) Second-order decisions



for each task. The vertical lines represent the confidence criterion cc, indicating the stimulus information
(i.e., orientation) required to report a specific level of confidence. The dashed lines represent the c. for low
confidence, and the solid line for high confidence. In Task 1, orientations arounds the category overlap
(0°) are reported with low confidence for both categories, and orientations that deviate enough from the
mean are reported with high confidence. In task 2, orientations around the means of the two categories
(0°) are associated with high confidence for Category A. Deviation from both sides of the category means
gives similar evidence for both categories, leading to low confidence for A and B. Extreme deviation of
orientation leads to report B with high Confidence.

1. Confidence ratings reflect sensory uncertainty for both groups

First, we examined how decision and confidence varied with stimulus orientation (11
orientations) and strength (7 contrast levels). Fig. 2 illustrates the proportion of reporting
Category B (top row) and the mean of confidence report (bottom row), as a function of
orientation, contrast level, and group. Values reported are across base rate and reward
blocks for Task 1 (Fig. 2a-d). For Experiments 1 and 2, manipulating category base rate and
reward (Fig. 2a-d, top row), category report was characterised by a sigmoid shape, with a
proportion of reports for Category B increasing as the orientation became more clockwise.
The sigmoid was steeper with high contrasts, reflecting that category report was more
sensitive to orientation as contrast increased. In Experiment 3, which manipulated sensory
uncertainty, we observed that the probability of reporting Category B (wider distribution)
increased as orientations deviated from 0° (i.e., mean of the narrow distribution), and the
categorisation became more sensitive to orientation as contrast increased (Fig. 2e-f, top
row, see Supplementary Results and Supplementary Table 1, for the statistical
analyses). Importantly, Fazioli et al., (2023, 2025)'®'°® and Fazioli et al., (in review)
conducted optimal observer analyses on the data and showed similar first-order decisions

for autistic and non-autistic groups when comparing them to optimal observers.

The variability in category reports is reflected in the confidence choices. Fig. 2a-f, bottom
row illustrates how confidence increased as the probability of selecting a given category
rose, with this relationship becoming sharper when stimulus strength increases (i.e., higher
contrast). This consistent relationship between category and confidence choices indicates
that participants can assess the reliability of their decision. To quantify how confidence
choice was associated with stimulus information, we performed linear and quadratic mixed-
effect models with binned orientation and contrast as within-subject factors and group as a

between-subject factor, on confidence ratings.
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Fig. 2. Category and confidence report data for (a, b) Experiment 1, prior manipulation, (c, d)
Experiment 2, reward manipulation, and (e, f) Experiment 3, sensory uncertainty manipulation. The
top row represents the proportion of reporting Category B (y-axis) as a function of orientation (x-axis) and
contrast (line colour). The bottom row illustrates the Mean of confidence (y-axis) as a function of
orientation (x-axis) and contrast level (line colour). In (a-d), data show means across participants and
base rate/reward blocks. In (e, f), data show means across participants. Error bars represent +SE. The
sample size consisted of 30 autistic and 41 non-autistic participants in (a, b), 27 autistic and 42 non-
autistic participants in (c, d-top), 27 autistic and 41 non-autistic participants in (c, d-bottom), 26 autistic
and 39 non-autistic participants in (e, f-top), and 26 autistic and 40 non-autistic participants in (e, f-
bottom).

Confidence depends on the stimulus value and strength in both groups

The mixed-effect models investigating the effects of stimulus information (i.e., orientation,
contrast) and group on confidence report included both linear and quadratic factors of
orientation. Here, we focused on the overall V-shaped pattern and did not interpret linear
terms separately.

Prior manipulation (Experiment 1)

In Experiment 1, as expected, confidence ratings were higher as contrast increased (£(29.12)
=5.70, p <.001), and this effect was more pronounced when orientations deviated from 0°,
as indicated by the interaction between squared orientation and contrast ({(59960) = 6.91, p
< .001). Participants reported overall higher confidence when base rate was unbalanced,
compared to balanced (#59960) = 2.82, p = .005) (see Supplementary Figure 2a), but
overall confidence ratings did not significantly vary across groups (t(47.70) = -1.54, p =

.130). All other main effects and interactions were not significant (see Supplementary
Results and Supplementary Table 2).

Reward manipulation (Experiment 2)



Similarly to Experiment 1, confidence ratings were higher as contrast increased (£(3.99) =
4.75, p = .009), and this effect was more pronounced when orientations deviated from 0°, as
indicated by the interaction between squared orientation and contrast (£(51110) = 5.52, p <
.001). Participants were more confident in the unbalanced reward block than the balanced
reward block (f(54860) = 2.96, p = .003) (see Supplementary Figure 2b). A significant
three-way interaction between contrast, reward, and squared orientation (£(55200) = 2.53, p
=.012) revealed that confidence ratings were more sensitive to stimulus value and strength
when reward was unbalanced. However, these effects did not vary across groups, as all
remaining effects, including the main effect of group (£(25.54) = -0.71, p = .763) and
interactions, were not significant (see Supplementary Results and Supplementary Table
2).

Sensory uncertainty manipulation (Experiment 3)

As in the categorisation task in Experiments 1 and 2, confidence ratings in Task 2 increased
with contrast (£(5.01) = 5.65, p = .002). Importantly, although overall confidence ratings did
not significantly vary across groups ({(15.42) = -0.10, p = .923), autistic participants’
confidence was more sensitive to stimulus value and strength, as indicated by a significant
three-way interaction between group, squared orientation, and contrast (£(98,770) = 2.99, p =
.003). All remaining effects and interactions were not significant (see Supplementary

Results and Supplementary Table 2).

These results indicate that in both groups in Task 1 (Experiment 1 and 2), confidence ratings
were driven by stimulus strength (i.e., contrast), an effect that depended on stimulus value
(i.e., orientation). Importantly, the relation between stimulus value and strength varied
between autistic and non-autistic individuals when first-order decision boundaries were
adjusted for sensory uncertainty alone, as in Task 2 (Experiment 3). However, such relations
rely on average adjustment of confidence based on participants’ assessment of the strength
of their first-order decision, but these relations do not reflect trial-to-trial variability in this
assessment. Such variability, or meta-uncertainty, constitutes metacognitive abilities. To
estimate each participant’'s meta-uncertainty, we next fitted the CASANDRE models of
confidence that quantify their estimation of their own decision reliability, separately for each

experiment.

2. Meta-uncertainty explains confidence reports in autism



2.1.

According to the CASANDRE model, in perceptual decision-making, metacognitive ability in
confidence report is determined by the observer’s reliability of their uncertainty estimate on
their perceptual choice. This well-established model explains previous works using both
Tasks A and B™*?°, The model has two-stage processes (a first-order decision and a second-
order confidence), and it is well rooted in traditional signal detection theory. The model
separates discrimination abilities and response bias from meta-cognitive abilities. By fitting
the model to the individual data, we estimated for each participant the following parameters:
sensitivity (s), decision criterion (c,), guess rate (g), confidence criterion (c.), and meta-
uncertainty (om). Hence, o, provides a measure of estimation of internal noise that is
independent of sensitivity and first-order decision. These parameters were optimised to
minimise the negative log-likelihood and best capture participants’ behavioural data (see

Methods, Computation model).

Fit of meta-uncertainty model on category and confidence reports

See Supplementary Methods for details about comparisons between different variants of
the meta-uncertainty model, and between models with meta-uncertainty as a free parameter
(meta-uncertainty mode) and identical models with meta-uncertainty fixed at O (restricted
model). Results demonstrate that meta-uncertainty plays a role in confidence reports in all

experiments (see Supplementary Results).

The association of category and confidence reports with stimulus information was closely
captured by the meta-uncertainty model in all experiments (see Supplementary Figure 3).
To illustrate how the association between choice consistency and confidence was predicted
by the meta-uncertainty model, Fig. 3 displays the mean confidence as a function of the
proportion of reporting B and contrast level, with observed (points) and predicted (solid lines)
data for individual subjects, for the prior (Fig. 3a-b), reward (Fig. 3c-d), and sensory
uncertainty (Fig. 3e-f) experiments. For the prior and reward experiments, we observed a
single association (‘U’ shape) between confidence and category report across contrast
conditions. This behaviour—captured by the meta-uncertainty model, as the predicted
behaviour closely fitted the data—demonstrates participants’ ability to assess the reliability of
their decision. In the sensory uncertainty experiment, the more complex pattern of
association between confidence and choice consistency was also captured by the meta-
uncertainty model. Here, we noticed a greater variance in this association for autistic
participants, as illustrated in Fig. 3e-f, suggesting more nuanced mapping of confidence on

choice consistency.
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Fig. 3. Model fitting to category and confidence reports of a sampled participant from each group in each
experiment. Mean of confidence (y-axis) as a function of proportion of reporting Category B (x-axis), contrast
(colour), and group, for the prior (a, b), reward (¢, d), and sensory uncertainty (e, f) experiments. Each subplot
displays the observed and predicted behaviour for an individual participant. Data points illustrate choice
behaviour, with size proportional to the number of trials. The solid lines represent the fit of the meta-uncertainty

model using the maximum likelihood estimation method.

Comparable first-order sensitivity

We next analysed model-derived parameters reflecting first-order processes (i.e., sensitivity
and decision criterion) in order to confirm that any differences in perceptual decisions
between groups did not stem from atypical first-order decisions in autistic participants. Fig. 4
illustrates perceptual sensitivity (top row) and decision criterion (bottom row) as a function of
contrast level and group. In Fig. 4a-b, values are reported across base rate and reward

blocks.

Prior manipulation (Experiment 1)

The ANOVA performed on sensitivity (s) revealed that sensitivity decreased with lower
contrasts (F(1.52, 106.28) = 105.47, p < .001, 7n,%= .60), indicating that the contrast variation
was an effective manipulation of stimulus reliability (Fig. 4a, top row). None of the other
effects were significant (see Supplementary Results), indicating that both groups exhibited

a comparable perceptual sensitivity to the contrast levels.
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Fig. 4. Signal detection parameters for (a) Experiment 1 manipulating prior, (b) Experiment 2
manipulating reward, and (c) Experiment 3 manipulating sensory uncertainty. (a-c, top row) Perceptual
sensitivity (s) as a function of contrast (x-axis) and group (line colour). The data are averaged across base
rate in (a-top) and reward in (b-top). (a-c, bottom row) Decision criterion (cq) as a function of contrast (x-
axis) and group (line colour). The data displayed in (a, b, top row) are for the unbalanced base
rate/reward blocks. All data points and bars show means across participants, and error bars represent

+SE. The sample size consisted of 30 autistic and 42 non-autistic participants in (a), 27 autistic and 42
non-autistic participants in (b, top row), 27 autistic and 41 non-autistic participants in (b, bottom row),

and 27 autistic and 40 non-autistic participants in (c).
Reward manipulation (Experiment 2)
The ANOVA performed on s revealed that sensitivity decreased as contrast decreased
(F(1.53, 102.80) = 72.51, p < .001, 7% = .52) (Fig. 34, top row). Furthermore, sensitivity was
higher in the unbalanced, compared to the balanced reward blocks (F(1, 67) = 8.83, p =
.004, n,2=.12) (see Supplementary Figure 4), and this effect occurred at all contrast
levels, except 0.033, as indicated by the significant interaction between reward and contrast
(F(1.31, 87.63) = 5.20, p = .017, n,?=.07). The two groups exhibited a comparable
sensitivity (F(1, 67) = 3.10, p = .083, 7,2=.04) and all remaining effects were not significant

(see Supplementary Information). Therefore, the two groups exhibited similar sensitivity to
the contrast manipulation.

Sensory uncertainty manipulation (Experiment 3)

Sensitivity declined with decreasing contrast (F(1.1, 65.94) = 64.69, p < .001, 7,? = .52) (Fig.
4c, top row), and the two groups did not differ in sensitivity (F(1, 60) = 0.94, p = .338, n,% =
.02), across levels of contrast (F(1.1, 65.94) = 2.28, p = .134, n,2= .04).

12



2.3.

Comparable first-order decision criterion

Prior manipulation (Experiment 1)

The ANOVA performed on the decision criterion (c4) revealed a greater criterion shift for
unbalanced, compared to balanced base rate (F(1, 70) = 124.56, p < .001, 7, = .64) (Fig.
4a, bottom row). Furthermore, criterion shift increased with decreasing contrast (F(1.97,
138.18) = 116.12, p < .001, n,2 = .62), and this only when base rate was unbalanced, as
indicated by the interaction between base rate and contrast (F(1.97, 138.18) = 116.12, p <
.001, 7,2 = .62). Therefore, participants shifted their decision criterion toward the category
with higher base rate probability as contrast decreased, and this in a comparable manner
between groups, as the main effect of group was not significant (F(1, 70) = 2.11, p = .151,
np? = .03), as well as all other effects (see Supplementary Information). Autistic individuals
performed the categorisation task similarly to non-autistics, by exhibiting similar sensitivity

and integration of prior information during first-order decisions.

Reward manipulation (Experiment 2)

Similarly, participants shifted their decision criterion more in the unbalanced, compared to
balanced, reward block (F(1, 69) = 19.61, p < .001, 7,%2=.22) (Fig. 4b. bottom row).
Furthermore, criterion shift increased as contrast decreased (F(1.43, 98.42) = 11.83, p <
.001, n,%2=.15), and this in a greater manner when reward was unbalanced (F(1.43, 98.43) =
11.83, p <.001, 7%= .15), with no difference between groups (F(1, 69) = 0.11, p =.738, 7,?

<.001). All other effects were not significant (see Supplementary Information).

Sensory uncertainty manipulation (Experiment 3)

The ANOVA performed on ¢, revealed that cqincreased as contrast decreased (F(2.47,
148.25) = 294.02, p < .001, n,%= .83) (Fig. 4c, bottom row). The two groups did not differ in
the overall shift of decision criterion (F(1, 60) = 0.53, p = .471, 1,?< .01), however non-
autistic participants tended to exhibit greater criterion shift in the contrast 0.004, as indicated
by the significant interaction between group and contrast (F(2.47, 148.25) = 3.71, p = .019,
np? = .06). This difference did not remain significant after correcting for multiple comparisons
(t(60) = 1.88, p = .065).

Overall, these results confirm that in each experiment, the first-order decision reflects the

specific contribution of one Bayesian component—prior, reward, or sensory uncertainty— to

perceptual inference. Moreover, autistic individuals performed the first-order task similarly to
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non-autistics. They exhibited comparable sensitivity to the orientation distributions and

integrated all Bayesian components to the same extent.
. Comparable confidence criterion across groups

In each experiment, the model estimated three confidence criteria, c., per participant,
representing the amount of internal evidence a participant requires to report increasing
levels of confidence. Specifically, c.-low marks the boundary between the low and medium-
low confidence keys, c.-medium between medium-low and medium-high, and c.-high
between medium-high and high. A higher c. value indicates a more conservative threshold,
meaning the participant requires stronger evidence to shift the confidence level. Fig. 5
illustrates the change in confidence criterion as a function of confidence level and group. In

Fig. 5a-b, values are reported across base rate and reward blocks.

Prior manipulation (Experiment 1)

The ANOVA performed on ¢, revealed that confidence criterion increased as confidence
level increased (F(1.52, 106.47) = 91.68, p <.001, 7n,%2= .57)—where c.-high was
significantly higher than cc-medium (t(71) = 10.1, p < .001), and c.-medium was higher than
cc-low (t(71) = 4.59, p < .001) (Fig. 5a)—indicating that participants adopted more
conservative thresholds when reporting higher confidence levels, demonstrating an
appropriate use of the confidence rating scale. All remaining effects, including the effects of
group (F(1, 70) = 3.55, p = .064, 1,2 = .05) and base rate (F(1, 70) = 0.04, p = .850, 7,2 <

.01), were not significant (see Supplementary Results).

Task 1 Task 2
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Fig. 5. Confidence criterion for (a) Experiment 1 manipulating prior, (b) Experiment 2 manipulating
reward, and (c) Experiment 3 manipulating sensory uncertainty. Confidence criterion (cc) as a function of
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confidence level (x-axis) and group (bar colour). Confidence levels reflect the position of the criterion
between two adjacent confidence keys: low/medium-low, medium-low/medium-high, and medium-
high/high, respectively. The data are averaged across base rates in (a) and reward in (b). Data points and
bars show means across participants, and error bars represent +SE. The asterisks represent the main
effect of confidence level evaluated with ANOVAs, ***p < .001. The sample size consisted of 30 autistic

and 42 non-autistic participants in (a), 27 autistic and 42 non-autistic participants in (b), and 27 autistic
and 40 non-autistic participants in (c).

Reward manipulation (Experiment 2)

The ANOVA performed on the c¢; showed that confidence criterion was more conservative as
confidence level increased (F(1.56, 104.32) = 53.15, p < .001, 7%= .44) (Fig. 5b), with a
greater confidence criterion for c.-high compared to c.-medium (£(68) = 8.00, p < .001), and
cc--medium compared to c.-low (£68) = 3.39, p = .004). Importantly, confidence criterion did
not vary between groups (F(1, 67) = 1.62, p = .208, n,2=.02), and reward (F(1, 67) = 3.14, p

=.081, n,2=.05). All other effects were not significant (see Supplementary Information).

Sensory uncertainty manipulation (Experiment 3)

The ANOVA performed on c¢. showed that confidence criterion increased with confidence
level (F(1.22, 73.43) = 20.17, p < .001, n»2 = .25) (Fig. 5¢), with a greater confidence
criterion for c.-high compared to cc-medium ({(61) = 4.73, p < .001) and cc-low ({61) = 4.73,
p <.001), while clow and c.-medium did not differ ({(61) = 2.22, p = .091). The confidence
criterion did not vary between groups (F(1, 60) = 0.50, p = .482, n,2< .01), or between
confidence levels and groups (F(1.22, 73.43) = 0.08, p = .833, 7,2< .01).

Therefore, both groups similarly adjusted their confidence criterion by adopting a more
conservative c. when reporting higher confidence in their categorisation in all experiments,

demonstrating a similar use of the confidence rating scale.

. Meta-uncertainty in autism depends on first-order Bayesian source

of uncertainty

Finally, we analysed the model estimation of meta-uncertainty (om)—referring to the
variability (uncertainty) in estimating the internal noise of the first-order decision variable—
the estimate of perceptual metacognitive abilities (see Methods, Computation model, and
Data analyses). A high o value is associated with higher meta-uncertainty, and hence,
lower metacognitive ability. To investigate whether and how cognitive abilities differed
between groups, and the type of Bayesian information integrated during first-order decision,

we conducted an ANOVA across experiments, with Bayesian information (prior, reward,
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sensory uncertainty) and group as factors, on the on. Fig. 6 illustrates meta-uncertainty as a
function of experiment and group, and means are reported across base rate and reward
blocks. To investigate whether prior or reward conditions modulated meta-uncertainty, we
also performed an ANOVA for each experiment with base rate/reward condition (balanced,
unbalanced) and group as factors on the om (see Supplementary Results and

Supplementary Figure 7).

The two groups did not differ in overall meta-uncertainty (F(1, 197) = 0.21, p = .648, 7,°<
.01), but rather during specific experiments, as indicated by the significant interaction
between experiment and group (F(2, 197) = 5.11, p = .007, 7,%2=.05) (Fig. 6). In the sensory
uncertainty experiment, the autistic group exhibited lower meta-uncertainty compared to the
non-autistic group (£(78.8) = 2.39, p = .020, d = 0.59), while in the prior experiment, the
autistic group tended to exhibit higher meta-uncertainty (£(32.3) = 1.92, p = .064, d = 0.49).
The ANOVA performed on meta-uncertainty from the prior experiment alone, investigating
the difference between groups and base rate blocks, supported this tendency, showing that
the autistic group exhibited greater meta-uncertainty compared to the non-autistic group
(F(1, 70) = 4.93, p = .030, 2= .07) (see Supplementary Results and Supplementary
Figure 7). The two groups did not differ in meta-uncertainty in the reward experiment (£(58.8)
= 0.35, p =.729). Importantly, meta-uncertainty in the non-autistic group did not vary
between experiments (post-hoc comparisons showed all p > .05). In contrast, in the autistic
group, meta-uncertainty in the sensory uncertainty experiment was lower compared to the
prior experiment (£(197) = 4.03, p < .001) and tended to be lower compared to the reward
experiment (£(197) = 2.24, p = .068). The difference between the prior and reward
experiments was not significant ({(197) = 1.78, p = .179). Overall, the main effect of
experiment was significant, (F(2, 197) = 4.57, p = .012, 1,2 = .04, but differences in meta-
uncertainty between experiments were not significant after correcting for multiple
comparisons: sensory uncertainty vs. prior, {(130) = 2.32, p = .065, sensory uncertainty vs.
reward, #(125) = 1.75, p = .164, prior vs. reward, t(129) = 0.86, p = .389.
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Fig. 6. Meta-uncertainty results per experiment. The meta-uncertainty om (y-axis) as a function of
experiment (x-axis) and group (bar colour). The data is averaged across base rate/reward blocks in
Experiments 1 and 2. Bars show means across participants, and error bars represent +SE. The interaction
between group and Bayesian component was evaluated using a between-subject ANOVA. The effects of
group per experiment were evaluated using unpaired t-tests, with p-values corrected for multiple
comparisons. ns: p 2.05, *.05 > p = .01, **.01 > p =2 .001. The sample size consisted of 30 autistic and 42
non-autistic participants in Experiment 1, 27 autistic and 42 non-autistic participants in Experiment 2, and
27 autistic and 40 non-autistic participants in Experiment 3.

Because many participants participated in Experiment 3 after completing Experiment 1
and/or 2, we aimed to control for a possible training effect in Experiment 3. Therefore, to
directly investigate if participation in previous experiments could improve metacognitive
abilities, we tested whether meta-uncertainty varied between and within groups as a function
of familiarity with the confidence report (i.e., whether participants performed Experiment 1 or
2 before completing Experiment 3). Results showed that in both groups, meta-uncertainty
was the same between experienced and unexperienced participants (see Supplementary
Results and Supplementary Figure 5), suggesting that group differences in meta-

uncertainty cannot be explained by experimental training.

We conducted additional analyses to examine within-subject variability in meta-uncertainty
between the prior and sensory-uncertainty experiments. The pattern of results indicates that
within participants, non-autistics exhibit comparable meta-uncertainty between the two
experiments, whereas autistics exhibit lower meta-uncertainty in the sensory uncertainty,
compared to the prior experiment. These results support our general findings, demonstrating
that meta-uncertainty in autistic participants depends on the Bayesian information integrated

into the first-order decision (see Supplementary Results and Supplementary Figure 6).

Discussion
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Alterations in self-monitoring and evaluation have been proposed to play a key role in
several neurodevelopmental conditions??, including autism?*. However, it remains unclear
whether atypical self-monitoring in autism arises from differences in metacognitive ability,
confidence bias, or is confounded by differences in first-order decisions. Using a
computational modelling approach, we independently quantified these processes and
identified a fundamental divergence in the factors that determine metacognitive ability in

autistic versus non-autistic individuals.

Both autistic and non-autistic participants associated confidence with sensory uncertainty
and adjusted their confidence criteria similarly. However, a key group difference emerged

in meta-uncertainty—the computational estimate of uncertainty about internal noise. While
meta-uncertainty remained stable in non-autistic participants, it varied in autistic participants
depending on task manipulations of Bayesian components: metacognitive ability was
enhanced (i.e., lower meta-uncertainty) when decisions relied solely on sensory evidence,
but was reduced when prior information influenced the decision. Notably, group differences
were specific to confidence reports. Perceptual sensitivity and decision criteria were
comparable across groups, and both groups demonstrated similar integration of Bayesian
information during first-order perceptual decision-making, as confirmed by comparisons with
an ideal observer model in previous studies'®'® (Fazioli et al., in review). Together with the
computational modelling results, these findings suggest atypical metacognitive abilities, even

when sensory processing and first-order decision-making are indistinguishable.

In non-autistic individuals, metacognitive ability is typically considered a domain-general
capacity—stable across tasks and sensory modalities?>-28. This consistency is also reflected
in meta-uncertainty, which varies between individuals but is strongly correlated within
individuals across sessions'3. Our findings replicate this pattern: the average meta-
uncertainty in the non-autistic group remained consistent across tasks. By contrast,
metacognitive monitoring abilities in autism are context dependent. Rather than exhibiting a
global reduction, autistic participants appear to monitor their own decisions more accurately
when those decisions depend directly on sensory evidence and less accurately when prior
knowledge or reward information influences the decision process. This suggests a reduced
weighting of non-sensory information in self-evaluation—an effect that corresponds with
claims of attenuated contextual integration in autistic perception'”?°. However, the present
study, together with Fazioli et al.’®, reveals that the attenuated effect of priors and context
emerges at the metacognitive level, rather than at the level of first-order perceptual

decisions'”.
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Metacognition and decision-making are dynamically coupled: confidence shapes learning,
exploration, and behavioural adaptation®3" and impacts subsequent choices and
behaviour®233, Thus, differences in metacognitive ability may partly explain downstream
behavioural differences. This is particularly relevant to sensory-related reactions in autism—
an area that has received increasing attention in recent years—as atypical sensory reactivity,
such as hypo- or hyper-responsiveness to sensory stimuli, has become recognized as a core
feature of the autistic phenotype. While previous research has predominantly focused on
sensory sensitivity and first-order decision-making'®'"*435 and some studies have proposed
differences in higher-level expectations and priors?®*:37  less attention was given to second-
order perceptual processes, and the mechanisms underlying sensory reactivity in autism
remain poorly understood. Our findings suggest that metacognitive monitoring capabilities
may play an important and previously underappreciated role in shaping how autistic
individuals engage with sensory input. Specifically, the reduced noise in estimating
knowledge based on sensory evidence demonstrates a more accurate monitoring of sensory
information in autistic individuals, suggesting a stronger bias towards sensory information at
the metacognitive level, and reduced bias towards contextual information. These findings
correspond to the claim of enhanced perception in autism®. However, we suggest that

enhanced abilities emerge at the second-order level rather than first-order sensitivity.

This bias towards sensory information may impact higher-order processes in decision-
making, such as monitoring decisions that integrate priors—as found in Experiment 1—and
therefore adjusting decision-making strategies based on prior information. These results
suggest that the accumulated evidence for reduced prior updating in autism during first-order
decisions®*“° may not originate in atypical first-order inference, but rather reflect weaker
metacognitive calibration under prior-driven decisions. In particular, if autistic individuals fail
to accurately evaluate the reliability of perceptual decisions when these are mainly guided by
priors, contextual changes may not elicit the change in decision confidence that signals the
need for adapting decision strategies through prior updating. Furthermore, a reduced ability
to update priors based on environmental changes can impair the capacity to form predictive
models of the environment, leading to an overestimation of volatility. This interpretation
aligns with recent theoretical accounts proposing overestimation of volatility as a key feature

of perceptual processing in autism3-37,

Moreover, the present findings highlight the promise of this mechanistic framework to
independently quantify first- and second-order perceptual processes —a novel contribution

in developmental condition research. This computational approach of metacognitive ability
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can capture individual differences overlooked by traditional accuracy-based measures,
offering a framework to link self-monitoring with neural, developmental, and behavioural

outcomes.

Finally, these results point to metacognition as a bridge for integrating perceptual processing
and social accounts of autism. Metacognitive monitoring underpins one’s capacity to
interpret not only one’s own mental states but also those of others; impairments in this
domain may therefore contribute to challenges in communication and perspective-taking*'2.
Understanding how metacognition operates in autism may thus illuminate the developmental
relationship between introspection, self-awareness, and theory of mind. This approach is
relevant to the study of a broader range of mental disorders, as alterations in metacognitive

computations are considered to play a critical role in many forms of psychopathology*+.

Methods

This study is based on data from a three-experiment project investigating perceptual
decision-making in autism through categorisation of orientation tasks. The analyses on first-
order decisions (i.e., category choice) were the object of Fazioli et al. (2023, 2025)'®'° and
Fazioli et al. (in review). The present study employs the same experimental procedure and

task design as those articles.

Participants

This study included 52 adults diagnosed with autism (41 males and 11 females) and 93 non-
autistic individuals (18 males and 75 females). Participants chose between receiving
monetary compensation (40 shekels/hour) or university credits (3 credits/hour). Autistic
participants were recruited from a pool of participants regularly involved in research at the
Department of Special Education. The two groups did not differ in age (£(105) = .55, p = .59),
with a mean of m = 26.70 years old (se = 0.86) for the autistic group, and m = 27.30 (se =
0.64) for the non-autistic group. Intellectual Quotient (I1Q) was assessed using the Test of
Non-Verbal Intelligence (TONI-4), which measures cognitive functioning independent of
language skills*®. The groups did not differ in IQ (£(60.3) = .90, p = .37), with a mean of m =
99.3 (se = 11.40) for the autistic group, and m = 101.0 (se = 9.72) for the non-autistic group.
Autistic traits were measured using the Autistic Quotient (AQ) questionnaire, and a t-test
(t(64.9) = 6.97, p < .001) revealed a significantly higher AQ score for the autistic group, m =

27.0 (se = 8.11), compared to the non-autistic group, m = 16.7 (se = 6.69). For each
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participant, we maintained a minimum 24 hour-interval between experiments or experimental

sessions.

The autism diagnosis was confirmed using standardised clinical assessments, including the
DSM-5%, the Autism Diagnostic Interview (i.e., ADI-R52), and the Autism Diagnostic
Observation Schedule (i.e., ASDOS-2). All participants completed the Community
Assessment of Psychic Experiences (i.e., CAPE) and AQ questionnaires, in their preferred
language (Hebrew or English), either during the clinical assessment or after the experimental
sessions. Non-autistic individuals with a history of epilepsy or learning disorders were
excluded from the study, as well as individuals diagnosed with autism who have known

genetic disorders (e.g., Down syndrome).

The three experiments received ethical clearance from the Institutional Review Board at the
University of Haifa under the reference number 046/20, and participants provided written

informed consent before every experimental session.

Apparatus and Stimuli

Apparatus and stimuli. Participants were set in a dimly lit room in front of a computer. A
chinrest was used to set viewing distance at 57 cm, and participants responded via a
keyboard. See Fazioli et al. (2025) for information about the monitor and display
background. Experimental design, tasks, and stimuli (Fig. 1a) were based on Qamar et al.
(2013)?", Denison et al. (2017)?2, and Adler and Ma (2018)2°. All stimuli were presented at
the centre of the screen. Each trial began with a 500 ms fixation (black circle, 0.2° visual
angle), followed by a 50 ms stimulus—a sinusoidal grating (Gabor patch) with a two-
dimensional Gaussian envelope (sd = 0.325°, 85% contrast, 3 cycles per degree). In each
trial, the grating’s orientation was randomly drawn from one of two Gaussian distributions,
corresponding to the two stimulus categories (Fig. 1a). Observers were asked to report from
which category they thought the stimulus belonged to, based on its orientation, and how
confident they were about their answer. Following stimulus onset, they reported both their
category choice (Category A or B) and their level of confidence using a 4-point scale using a
single key. The confidence rating scale ranged from high-confidence Category A to high-
confidence Category B (see Fig. 1a). To manipulate sensory uncertainty, we randomly varied
stimulus contrast across trials, using seven fixed values (0.004, 0.016, 0.033, 0.093, 0.18,
0.36, 0.72). The sensory uncertainty manipulation was used to 1) modulate the integration of
prior and reward information into the perceptual decision in Experiments 1 and 2, and

directly investigate the effect of sensory uncertainty on the decision boundaries in
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Experiment 3, and 2) assess participants’ ability to evaluate the reliability of their decision

across different sensitivity levels— an estimate of metacognitive ability.

Categories. The stimulus categories were defined by continuous Gaussian orientation
distributions. In Task 1 (Experiments 1 and 2), distributions were centred at ma = - 4° and ms
= 4° (relative to the horizontal line), with standard deviations of sda = sds = 5° (Fig. 1b, Task
1). In Task 2 (Experiment 3), we used embedded categories, a design allowing to test how
changes in sensory uncertainty only influence perceptual decisions?%224¢_ Here, distributions
had identical means, ma = mg = 0° (horizontal), but differing standard deviations, sda = 3°
and sds = 12° (Fig. 1b, Task 2). These parameters were selected to yield an optimal

accuracy rate of approximately 80%.

Blocks. Each experiment consisted of three blocks. In Experiment 1, we manipulated prior
information by explicitly varying category base rate probabilities across blocks, with either
balanced (B = 50% and A = 50%) or unbalanced (B = 25% and A=75% or B =75% and A=
25%) prior base rate between the two categories. In Experiment 2, we manipulated reward
information by explicitly varying the number of points awarded for correct answers in each
category across blocks, with balanced (B = 2 points and A = 2 points) or unbalanced (B = 1
point and A = 3 points or B = 3 points and A = 1 point) reward value between categories. In
both experiments, the balanced block was always performed second. The order of the
unbalanced blocks was counterbalanced between participants. In Experiment 3, as the
sensory uncertainty was the main manipulation, there was no difference between the three

experimental blocks.

Procedure and Design
Trainings. Each experiment started with extensive category (40 trials) and confidence (40
trials) training, with stimulus displayed for 300 ms at 100% contrast, see Fazioli et al. (2025)

for more information.

Main experiment. Participants were explicitly introduced to the variation between each
experimental block (e.g., base rate for Experiment 1 and reward points for Experiment 2)
with a verbal explanation. At the beginning of each block, they were informed of the new
base rate/reward condition, and performed a 40-trial practice session in which they reported
both category and confidence. After each response, a text displayed the chosen category,
along with a correctness auditory feedback. We ensured that participants reached around

70% accuracy during this practice session, reflecting that they were familiar enough with the
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categories, the response keys, and the block conditions. Then, they completed the block of
280 test trials.

During the test blocks, no trial-to-trial feedback was given to prevent for feedback-based
learning and ensure that decision boundaries were generated internally. However,
participants received a summary of their categorisation accuracy every 50 trials to maintain
engagement. In Experiments 2 and 3, participants also received information about the
number of points earned in the previous 50 trials, and the total points accumulated

throughout the experiment.

To ensure participants understood the main manipulations (i.e., base rate or reward), a
“check question” was randomly introduced. In Experiment 1, participants were asked to
gamble an amount (0-99 cents) on the chances for the next stimulus to belong to a specific
category, with the remaining money assigned to the other category. They were informed that
their prediction accuracy would influence a bonus added to their original compensation. In
Experiment 2, participants were asked about how many points they would earn for correctly
categorising a stimulus from a given category. Additionally, they were informed that the
accumulated number of points earned during the experiment would determine a bonus
added to their original compensation. No comprehension checks were needed in Experiment
3, so the same gambling question from Experiment 1 was used to maintain consistency. A
reward system was also implemented to keep the same level of implication as in
Experiments 1 and 2. Participants were informed that every correct answer was worth two
points, and the total accumulated points would determine a bonus added to their
compensation. In Experiments 1 and 2, participants completed 960 experimental trials over
approximately 50 minutes. Preliminary data indicated that Experiment 3 was more
susceptible to noise. Therefore, participants performed two separate sessions of 960 trials,

with a minimum 24-hour gap between them.

Data analyses
We used MATLAB (R2024b) to fit the computational model to our data. Statistical analyses

were conducted in R (4.4.1).

Based on previous analyses, we assumed a symmetry in participants’ criterion shift between
opposite base rate/reward® blocks. Therefore, before implementing the model, we
converted the responses from blocks where Category A had low base rate/reward, in order
to combine the trials with the other unbalanced block for a single model fit. We reversed

stimulus category and stimulus responses and multiplied the stimulus orientation by -1.
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Outlier removal

In all Experiments, participants with an accuracy below 0.6 at the three highest contrast
levels and across blocks, were excluded from all analyses. In Experiment 3, we also
removed participants with extreme criterion shifts (k > 100) or a sensory uncertainty (o >
100) from all analyses'®. We also excluded participants who used one key per category,
indicating that they reported categorisation choice only, and participants who exhibited a
meta-uncertainty that fell above the third quartile plus three times the interquartile range from
all analyses. Additionally, we excluded participants showing an overall negative decision
criterion from the decision criterion analyses. Finally, participants who did not have trials in
all combinations of binned orientation and contrast were automatically excluded from the

behavioural data analyses (category and confidence report).

Computational model

To estimate meta-cognitive abilities, we fitted a recent computational model (the
‘CASANDRE’ or ‘confidence as a noisy decision reliability estimate’ model)'® that was shown
to explain well behavioural confidence reports in previous studies using the same basic
stimuli and task'3. The model estimates meta-uncertainty, a metacognitive parameter
reflecting how precisely an individual can assess their decision reliability. The model
assumes that on each trial, an observer estimates the reliability of their decision (makes a
confidence decision, V.) by comparing the absolute distance between the decision variable
V4 (i.e., strength of sensory evidence) and the contrast-specific decision criterion ¢4, and
normalising it by &, the estimate of the dispersion of V, (Eq. 1). Here, Vy is derived from a
normal distribution centred on the true stimulus value, with a variability given by sensory
noise (i.e., inverse of sensitivity). The absolute difference between V4 and V. reflects the
strength of the decision, with a higher value indicating stronger evidence. Therefore, V; can
be explained as the strength of evidence for the choice, scaled by how noisy the internal
system is perceived to be. Indeed, this framework assumes that observers don’t have
access to their actual sensory uncertainty and estimate for every decision. This estimate 6,
is modelled as a random variable drawn from a lognormal distribution with a mean of o4 (i.e.,
the true sensory noise), and a trial-to-trial variability of om. Finally, confidence rating was
obtained by comparing Vy to a fixed confidence criterion c.. Therefore, the noise when
estimating decision reliability mainly comes from variability in assessing sensory uncertainty,

also called meta-uncertainty om. A larger onindicates greater variability in estimating internal
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noise, and therefore, lower metacognitive abilities. Additionally, a guess rate (g) parameter is
included to account for random response.

_ Va—caql
Ve="—"— (1)
0d

For each participant in each contrast level, the model estimates sensitivity (s) and decision
criterion (cy). Additionally, for each participant across all contrast levels, the model estimates

guess-rate (g), confidence criterion (c.), and meta-uncertainty (om).

To apply the model, we modelled sensitivity using a Naka-Rushton function, defined by a
maximum sensitivity Rmax, @ semi-saturation constant Cso, and a slope n (Eq. 2). Therefore,
the model contained 15 free parameters: GR, meta-uncertainty (om), three sensory
parameters (Rmax, Cso, n), seven decision criteria (¢y), and three confidence criteria (cc, one
less than the number of confidence levels). Each parameter was optimised to minimise
negative log-likelihood, using the MATLAB fmicon function. The fitting procedure was
structured in three nested loops, and the best fit was selected based on the lowest log-
likelihood.

Rmax* cm

S= S n (2)

C+ Cgo™

The starting values of GR, om, Rmax, Cs0, N, and c. were respectively: 0.01, 0.5, 1.5, 0.3, 2, 1.
We defined strict lower and upper bounds for each parameter to ensure valid estimates: 0 <
GR<0.1;0.1<0m<5;0.005<Rmax<5,05<n<5;0.0056<Cs0<1;0<c:<10.

In Task 1, the starting values of the decision criteria c; were set at 0. For the trials from
unbalanced blocks (i.e., unequal reward or prior between categories), the boundaries were -
20 < ¢q< 20. For the trials from the balanced block (i.e., equal reward or prior between
categories), the boundaries were -0.002 < ¢;< 0.002, as the criterion was not expected to
vary when sensory evidence decreased, in order to reduce the number of free parameters to
12.

In Task 2, the observer sets two decision boundaries to distinguish between the narrow
category A and the broad category B (Fig. 1¢, Task 2). To reduce the number of free
parameters, we assumed these boundaries to be symmetrical around zero degrees.

Therefore, we estimated the lower value of ¢4 for each contrast, and multiplied it by minus
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one to estimate the upper value. The boundaries were set at -20 < c4< 0, and the starting
values were set from -5 (high contrast) to -11 (low contrast). Therefore, similar to the

unbalanced trials of Task 1, we used 15 free parameters for modelling data from Task 2.

Model comparison

We started by fitting the original model to the data. In that version, sensitivity was estimated
separately for each contrast level (i.e., 7 values), using a signal-detection-theory-like model.
For Task 1, the model did not conditionally constrain cq, and for Task 2, both boundaries for
cq were estimated. This resulted in a total of 19 free parameters for Task 1, and 26 for Task
2. To reduce the number of free parameters and minimise the risk of overfitting, we tested
three alternative model variants, where estimates for sensitivity and decision criterion were
reduced. The model described above, using the Naka-Rushton function to estimate
sensitivity, demonstrated the best fit (see Supplementary Results). The results reported in
the main text are based on the parameters extracted from this model. The description and
comparison between models are provided in the Supplementary Methods, Supplementary

Results, and Supplementary Figure 1.

Statistical analyses

Behavioural data

Categorisation task
For each experiment, we investigated how the category choice varied across contrast and
orientations. For Experiments 1 and 2, we conducted 2 x 7 x 11 x 2 linear mixed-effect
models with group (non-autistic, autistic) as a between-subject factor, and contrast (0.004,
0.016, 0.033, 0.093, 0.18, 0.36, 0.72), orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10), and
base rate / reward (balanced, unbalanced) as within-subject factors, on the proportion of
reporting Category B. For Experiment 3, we conducted a 2 x 7 x 11 linear and quadratic
mixed-effect model to account for the V-shaped pattern of response. The model included
group (non-autistic, autistic) as a between-subject factor, contrast (0.004, 0.016, 0.033,
0.093, 0.18, 0.36, 0.72), and orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10) as within-subject
factors, as well as the squared orientation factor, and was performed on the proportion of

reporting Category B (see Supplementary Results, Supplementary Table 1)

Confidence task
We investigated how the confidence report was influenced by the different manipulations for
each experiment. In Experiments 1 and 2, we conducted 2 x 7 x 11 x 2 linear and quadratic

mixed-effect models with group (non-autistic, autistic) as a between-subject factor, and
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contrast (0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 0.72), orientation (-10, -8, -6, -4, -2, 0, 2, 4,
6, 8, 10), and base rate/reward block (balanced, unbalanced) as within-subject factors, on
the confidence report. A squared orientation factor was added in each model to account for
the V-shaped behaviour. In Experiment 3, we conducted a 2 x 7 x 11 linear mixed-effect
model with group (non-autistic, autistic) as a between-subject factor, and contrast (0.004,
0.016, 0.033, 0.093, 0.18, 0.36, 0.72), and orientation (-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10) as

within-subject factors, on the confidence report.

Sensitivity and decision criterion

We used the parameters from the Naka-Rushton fitting to estimate the sensitivity s; for each
level of contrast C; for each participant (Eq. 3). In Experiments 1 and 2, we performed 2 x 2 x
7 mixed-design ANOVAs with group (non-autistic, autistic) as a between-subject factor, and
prior/reward (balanced, unbalanced) and contrast (0.004, 0.016, 0.033, 0.093, 0.18, 0.36,
0.72) as within-subject factors on the s and c,. In Experiment 3, we performed 2 x 7 mixed-
design ANOVAs with group (non-autistic, autistic) as a between-subject factor, and contrast
(0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 0.72) as a within-subject factor on the s and ca.

S = Rmax* Ci"
! Ci™+ Cs0™
Confidence criterion
Because there were four confidence levels, there were three confidence-level boundaries:
1=between low and mid-low, 2 = between mid-low to mid-high, 3 = between mid-high and
high). To investigate the shift in confidence criterion c., we performed a 2 x 3 x 2 mixed-
design ANOVA with group (non-autistic, autistic) as a between-subject factor and
confidence-level boundaries (1, 2, and 3) and base-rate block (balanced, unbalanced) as
within-subject factors on the c.. In Experiment 2, we performed a similar 2 x 3 x 2 mixed-
design ANOVA with group, confidence-level boundary, and reward block (balanced,
unbalanced). In Experiment 3, we performed a 2 x 3 mixed-design ANOVA with group (non-
autistic, autistic) as a between-subject factor and confidence level (1, 2, 3) as a within-

subject factor on the c..

Meta-uncertainty
To investigate whether meta-uncertainty differed between groups, and whether the type of
Bayesian information involved in perceptual decisions affected the metacognitive abilities,

we performed a 2 x 3 between-subjects ANOVA with group (non-autistic, autistic) and
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experiment (prior, reward, sensory uncertainty) as between-subject factors, on the meta-

uncertainty.

To control for potential improvement in metacognitive abilities over time among participants
who completed multiple experiments, we directly tested whether meta-uncertainty in
Experiment 3 varied as a function of familiarity with the task, by conducting a 2 x 2 between-
subject ANOVA one the meta-uncertainty in Experiment 3, with group (non-autistic, autistic)
and previous participation (with, without) as between-subject factors. See Supplementary

Results and Supplementary Figure 4.

To investigate the difference between groups and block conditions (prior, reward) in
metacognitive abilities for Experiments 1 and 2, we conducted for each experimenta 2 x 2
mixed-design ANOVA with group (non-autistic, autistic) as a between-subject factor, and
prior/reward block (balanced, unbalanced) as a within-subject factor on the on. The results

are described in the Supplementary Results and Supplementary Figure 6.

Guess rate

In Experiments 1 and 2, we performed a 2 x 2 mixed-design ANOVAs with group (non-
autistic, autistic) as a between-subject factor, and prior/reward block (balanced, unbalanced)
as a within-subject factor on g. In Experiment 3, we conducted an unpaired t-test on g with
group (non-autistic, autistic) as the between-subject factor. The results are displayed in the

Supplementary Information.

Significant effects from the ANOVAs were further investigated using paired and unpaired t-
tests as appropriate to elucidate the nature of the observed differences. Bonferroni
corrections were applied to control for multiple comparisons. Effect sizes were calculated
using partial eta square (7,%) for ANOVAs and Cohen’s standardised mean difference (d) for

t-tests.
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Table

Overall n Category Confidence Sensitivity Decision Confidence Meta- Guess rate
report report criterion criterion uncertainty
Prior Nautistic = 34 Naytistic = 30 Nautistic = 30 Nautistic = 30 Nautistic = 30 Nautistic = 30 Nautistic = 30 Nautistic = 30
experiment Nnon-autistic = 49 Nhon-autistic = 41 Nnon-autistic = 41 Nnon-autistic = 42 Nnon-autistic = 42 Nnon-autistic = 42 Nnon-autistic = 42 Nnon-autistic = 42
Reward Naytistic = 32 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27
experiment Nnon-autistic = 48 Nnon-autistic = 42 Nnon-autistic = 41 Nnon-autistic = 42 Nhon-autistic = 41 Nnon-autistic = 42 Nnon-autistic = 42 Nnon-autistic = 42
Sensory Nautistic = 34 Nautistic = 26 Nautistic = 26 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27 Nautistic = 27
uncertainty Nnon-autistic = 44 Nnon-autistic = 39 | Nnon-autistic = 40 Nnon-autistic = 40 | Nnon-autistic = 40 Nnon-autistic = 40 Nnon-autistic = 40 | Nnon-autistic = 40
experiment

Table 1. Description of the sample size in the three experiments for the overall sample, and statistical analyses

performed on each estimate: category report, confidence report, sensitivity, decision criterion, confidence

criterion, meta-uncertainty, guess rate.
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Supplementary methods

Model fitting

For each experiment, we performed four model fittings, varying the method for estimating
sensitivity to reduce the number of free parameters, while preserving a good fit to the data.

Original model

In the original model, stimulus sensitivity si was estimated separately for each contrast (i.e.,
7 levels), using a Signal Detection Theory (SDT)-based model of choice and confidence.
Each s was treated as a free parameter, optimised via maximum likelihood to best predict
the participant’s decision variable V. To reduce the number of free parameters, we
implemented alternative models in which sensitivity was fitted with parametric functions
during the optimisation of V.

Linear model

In the linear model, changes in sensitivity across contrast were modelled with a linear
function for each participant. Here, Ci represents stimulus contrast, a the slope, and b the
intercept (Eq. 1). Two free parameters (a and b) were estimated per participant.

s;=ax*xCi+Db (1)

Gaussian model
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Visualisation of sensitivity revealed that changes did not follow a strict linear progression.
We used a Gaussian cumulative distribution function (CDF) to capture the nonlinear
behavior (Eq. 2). In this equation, u represents the inflection point (i.e., center of the curve),
othe spread (i.e., slope), and ¢ the cumulative normal distribution. Two free parameters
were estimated (¢ and o) per participant.

si= @ (2)

Naka-Rushton model

Finally, to account for saturation of sensitivity at high contrast levels, we used a Naka-
Rushton function to model sensitivity (Eq. 3). Here, Ciis the stimulus contrast, Rnax the
asymptotic maximum sensitivity, Cso the contrast at which sensitivity reaches half of Rmax,
and n the slope parameter controlling the steepness of the function.

Rmax* Ci" (3)

S; =
L Cin+ CSOn

Statistical analyses

Model comparison

We fitted all four models (i.e., original, linear, Gaussian, Naka-Rushton) to each experiment’s
datasets. Each fit produced one set of parameters for the meta-uncertainty model (meta-
uncertainty as a free parameter), and another set for the reduced model (meta-uncertainty
fixed at 0). For each model, the negative likelihood (NLL) was computed to quantify how the
model predicted the observed data. From the NLL values, we calculated the corrected
Akaike Information Criterion (A/Cc) to evaluate model quality while accounting for the
number of free parameters (k) and trials (n) (Eq. 4). For each model, we performed t-tests on
the AICc to assess whether the model including the meta-uncertainty parameter
outperformed the model without it.

2kx(k+1)

AlCc = (2k + 2NLL) + ===

(4)

To compare the different variants (i.e., linear, Gaussian, Naka-Rushton) in each experiment,
we computed for each participant the difference between the A/Cc of the original model and
the AICc of each variant. High values in the resulting 4A/Cc indicate a better fit to the data.
We then performed mixed-design ANOVAs on the 4AICc to find the best-fitting model, with
Model (linear, Gaussian, Naka-Rushton) as a within-subject factor, and group (autistic, non-
autistic) as a between-subject factor. In Experiments 1 and 2, the factor base rate/reward
block (balanced, unbalanced) was added to the ANOVAs. Finally, we performed one-sample
t-tests on AAICc values corresponding to the model variant with the highest AAICc. This
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tested whether the mean 4AICc was significantly greater than 0, indicating that the selected
variant provided a better fit than the original model.

After selecting the variant model that outperforms the original model based on the AAICc, we
evaluated, for the selected variant, whether including the meta-uncertainty as a free
parameter improved model fit. For each experiment, we calculated the AlCc gain, defined as
the difference between the AlICc of the restricted model and the AlCc of the meta-uncertainty
model, where a positive value indicates that including the meta-uncertainty as a free
parameter improves model fit. We excluded participants with extreme AICc gain values (> 3
sd): one autistic participant in Experiment 1, one non-autistic participant in Experiment 2,
and three autistic and four non-autistic participants in Experiment 3, resulting in a final
sample of 71, 68, and 55 participants, respectively. Then, we conducted one-sample t-tests
against 0 to test whether models including the meta-uncertainty models systematically
outperformed the restricted models, separately for each experiment.

Supplementary results

Model comparison

We first compared the model fits for the different variants of the contrast sensitivity function
(i.e., linear, Gaussian, Naka-Rushton) across experiments. Supplementary Figure 1
illustrates 4A/Cc as a function of model fitted per groups. In Task 1 (plots a-b), values are
reported across base rate and reward blocks.

Prior experiment

The ANOVA performed on the AAICc revealed a main effect of model F(1.39, 97.38) = 35.93,
p <.001, n,? = .34, with the Naka-Rushton model being a better predictor than both the
Gaussian ({(77) = 5.40, p < .001) and the linear (t(77) = 7.24, p < .001) models
(Supplementary Figure 1). Furthermore, the main effect of base rate was significant (F(1,
70) =4.99, p = .029, n2 = .07), indicating that the models predicted better the data from the
balanced, compared to the unbalanced blocks. The interaction between model and base rate
was significant (F(1.96, 137.01) = 5.72, p = .004, 7,*> = .08), and caused by a main effect of
base rate only in the linear model (t(76) = 3.63, p < .001), compared to the Gaussian ({(76) =
1.34, p = .182) and Naka-Rushton (#(76) = 0.92, p = .359) models. All other effects were not
significant, including the main effect of group (F(1, 70) = 1.08, p = .303, 7,2 = .02), the
interaction between group and model (F(1.39, 97.38) = 0.99, p = .348, 1,? =.01), and the
three-way interaction (F(1.96, 137.01) = 2.53, p = .084, 7, = .04). The one-sample t-test
performed on AAICc of the Naka-Rushton model revealed no significant difference from 0
(t(71) = 0.49, p = .628), that this model did not outperform the original one. Therefore, the
Naka-Rushton model better fitted the data from the prior experiment.
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Supplementary Figure 1. Comparison between models. 4A/Cc (y-axis) represents the difference of
AICc between the original and the variant (i.e., Gaussian, linear, Naka-Rushton) models (x-axis), such as
AAICc = AlCoriginal — AlCvariant. Higher values indicate better model fit, and values above 0 indicate that the
variant outperformed the original model. The comparison between models was performed for the (a) prior,
(b) reward, and (c) sensory uncertainty experiments. In (a), the data is averaged for each model and
group, across base rate, and the sample size consisted of 30 autistic and 42 non-autistic participants. In
(b), the data is averaged for each model and group, across reward block, and the sample size consisted
of 27 autistic and 42 non-autistic participants. In (c), the data is averaged for each model, and the sample
size consisted of 27 autistic and 40 non-autistic participants.

Reward experiment

The ANOVA revealed a main effect of model (F(1.53, 102.56) = 51.63, p < .001, n,2 = .44),
where the Naka-Rushton model was a better predictor than both the linear (1(69) = 8.24, p <
.001) and Gaussian (1(69) = 6.94, p < .001) models. The main effect of reward was
significant (F(1, 67) = 42.05, p <.001, n,? = .39), with models overall fitting better on the
data from the balanced, compared to the balanced block. The main effect of group was not
significant (F(1, 67) = 0.76, p = .386, n,2 = .01), but the interaction between group and
model was significant (F(1.53, 102.56) = 3.69, p = .039, 7,2 = .05), and caused by a better fit
of the Gaussian (t(67) = 2.44, p = .018) and the Naka-Rushton (t(67) = 2.04, p = .045)
models for the autistic, compared to the non-autistic group. The difference between groups
was not significant in the linear model (1(67) = 0.92, p = .356). The interaction between
model and reward block was significant (F(1.76, 117.6) = 19.59, p < .001, 7,? =.23), and
caused by a larger difference of AAICc between reward block in the linear (1(68) = 6.64, p <
.001) and Gaussian (1(68) = 4.03, p <.001), compared to the Naka-Rushton ({(68) = 2.13, p
= .037) model. The interaction between group and reward block (F(1, 67) = 0.62, p = .436,
np? <.01) and the three-way interaction (F(1.76, 117.6) = 1.44, p = .242, n,? =.02) were not
significant. The one-sample t-test performed on 4A/Cc of the Naka-Rushton model was
significantly greater than 0 (t(68) = 2.39, p = .020), indicating that this model provided a
better fit to the data than the original one. Therefore, the Naka-Rushton model better fitted
the data from the reward experiment and outperformed the original model.

Sensory uncertainty experiment
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The ANOVA performed on 4A/Cc revealed no significant main effects of model (F(1.37,
81.98) =1.71, p = .194, n,? = .03), group (F(1, 60) = 0.01, p = .922, n,2 <.01), and no
significant interaction between model and group (F(1.37, 81.98) = 0.67, p = .463, 1,% = .01).

These results indicate that the model estimating sensitivity using a Naka-Rushton function
provided the best fit to the data in Experiments 1 and 2. In Experiment 3, all variants of the
model performed similarly; however, for consistency, we analysed the Naka—Rushton fitted
parameters in all subsequent analyses. After selecting this variant, we performed model
comparisons between the model with meta-uncertainty as a free parameter (meta-
uncertainty mode) and the identical with meta-uncertainty fixed at O (restricted model),
revealed that, for Experiments 1 and 2, the model with the meta-uncertainty component
outperformed the restricted model ({(70)=9.35, p < .001; #(67) = 8.43, p < .001, respectively),
and this for both group (p < .001 for each group). However, in Experiment 3, the model with
meta-uncertainty outperformed the restricted model for the non-autistic group (£(32) = 3.50, p
=.001), but not the autistic group (£(21) = 0.15, p = .880). This indicates that, in the sensory
uncertainty experiment, meta-uncertainty does not significantly explain the variance in the
confidence behaviour in the autistic participants, suggesting a lower meta-uncertainty in the
autistic group. The remaining analysis focuses on the fitted parameters of the meta-
uncertainty model with the Naka-Rushton function to estimate sensitivity.

Category report

Prior experiment

The linear mixed-effect model performed on the proportion of reporting Category B revealed
a significant main effect of orientation (£(197.40) = 28.24, p < .001), indicating that the
proportion of reporting B increased as stimulus orientation became more clockwise. The
main effect of contrast was not significant (£(325.20) = 1.42, p = .156), but the significant
interaction between contrast and orientation (£(10520) = 22.18, p < .001) indicated a greater
effect of orientation as contrast increased. Finally, the three-way interaction between
orientation, contrast, and base rate was significant (£(10510) = 3.25, p = .001), indicating that
the interaction between orientation and contrast was stronger when the base rate was
unbalanced. All remaining main effects and interactions were not significant, including the
main effect of group (£(149.30) = 0.13, p = .898) and all interactions associated with this
factor (see Supplementary Table 1).

Reward experiment

The main effect of orientation on the probability of report category B was significant
(t(225.70) = 30.85, p < .001), as well as the interaction between contrast and orientation
(t(10170) = -21.80, p < .001). All remaining effects were not significant, including the main
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effect of group (£(144.90) = 0.04, p = .969) and all interactions with this factor (see
Supplementary Table 1).

Sensory uncertainty experiment

The quadratic model performed on the proportion of reporting B revealed a main effect of
contrast (#(46.57) = 4.41, p <.001), indicating that the proportion of reporting B increased
with higher contrasts. The main effect of squared orientation was significant (£(114.00)=
25.79, p < .001), demonstrating the V' shape of the category report, with an increase of
proportion of reporting B as orientations deviate from 0°. The interaction between the
squared orientation and contrast was significant (£(4528) = -18.96, p < .001), demonstrating
that the proportion of reporting B flattened as contrast decreased. All other effects were not
significant (see Supplementary Table 1).

These results indicate that the category report was more sensitive to orientation as contrast
increased, without differences between groups, in all three experiments.

Confidence report

The results from the linear and quadratic mixed-effect models investigating the confidence

report in each experiment are reported in Supplementary Table 2. The main effects of base

rate and reward conditions on confidence reports are illustrated in Supplementary Figure 2.
44 4+

Balalnced Unballanced Bala'nced Unballanced
Base rate Reward

Group . Autistic - Non-autistic

Q

b

Mean confidence
[p%]

Mean confidence
N

Supplementary Figure 2. Effect base rate/reward on the confidence report.
Mean confidence report (y-axis) for each base rate/reward condition (x-axis) and
group (bar colour), for (a) the prior and (b) reward experiments. The data is
averaged across orientations and contrasts. Bars show means across participants,
and error bars represent +SE. The sample size consisted of 30 autistic and 41 non-
autistic participants in (a) and 27 autistic and 41 non-autistic participants in (b).
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Consistency in category and confidence report

Supplementary Figure 3 illustrates how category and confidence reports were predicted by
the meta-uncertainty model. The figure displays proportion of reporting Category B (top row)
and mean of confidence report (bottom row) as a function of stimulus orientation and the
two extreme contrast values, for the prior (a, b), reward (c, d), and sensory evidence
experiments (e, f). Here, we plotted observed and model predicted data for an individual
subject in each subplot. The sigmoid, ‘V’, and ‘W’ shapes observed in Fig. 2 for high
contrasts—characteristic of category and confidence reports that are sensitive to stimulus
information—were reproduced by the model predictions, and fitted properly with the
observed data. For low contrasts, the fitted lines flattened, reproducing well the reduced
association of category and confidence reports with stimulus information. These
observations demonstrate that the pattern of category and confidence reports was well
captured by the meta-uncertainty model. Importantly, in the sensory uncertainty experiment,
we noticed that autistic individuals exhibited a more detailed association between reports
and stimulus information, as illustrated by the steeper curve in Task 2 for the autistic
participant, suggesting a greater association between confidence and choice consistency.
Therefore, participants’ behaviour was well captured by the meta-uncertainty in all
experiments.

Task 1 Task 2
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Supplementary Figure 3. Model fitting for a sampled participant from each group in each experiment.
Proportion of reporting Category B (top row, y-axis) and mean of confidence report (bottom row, y-axis) as a
function of stimulus orientation (x-axis) and the two extreme contrast values, for the prior (a, b), reward (c, d),
and sensory evidence experiments (e, f). Each subplot displays the observed and predicted behaviour for an
individual participant. Data points illustrate choice behaviour, with size proportional to the number of trials. The
solid lines represent the fit of the meta-uncertainty model using the maximum likelihood estimation method. The
model was fit to all data simultaneously for each experiment and group.
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Perceptual sensitivity
Prior experiment

The ANOVA performed on the sensitivity (d') revealed no significant main effects of group
(F(1,70)=0.77, p = .782, n,?< .01), base rate (F(1, 70) = 1.67, p = .201, 7,%2=.02), and no
significant interactions between group and base rate (F(1, 70) = 0.23, p = .630, 7,2< .01),
group and contrast (F(1.52, 106.28) = 1.06, p = .336, n,2= .02), base-rate and contrast
(F(1.44, 101.01) = 0.51, p = .545, 1,2 < .01), and between contrast, group and base rate
(F(1.44,101.01) = 0.28, p = .684, 1,2 < .01).

Reward experiment

The ANOVA performed on the sensitivity revealed no significant interactions between group
and reward (F(1, 67) = 2.01, p = .161, 1,?=.03), group and contrast (F(1.53, 102.80) = 3.04,
p = .066, n,%=.04), and between group, reward and contrast (F(1.31, 87.63) = 1.86, p =
174, n,?=.03). The main effect of reward was significant (F(1, 67) = 8.83, p =.004, 1,2 =

.12) and is illustrated in Supplementary Figure 4, reporting sensitivity as a function of
contrast and reward block, across groups.
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Supplementary Figure 4. Difference in sensitivity between reward
conditions. Sensitivity as a function of contrast (x-axis) and reward
block (line color). Data points and bars show means across
participants and groups, and error bars represent +SE. The sample
size consisted of 27 autistic and 41 non-autistic participants.

Decision criterion
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Prior experiment

The ANOVA performed on the decision criterion revealed no significant interactions between
group and base rate (F(1, 70) = 2.11, p = .151, 1,* =.03), group and contrast (F(1.97,
138.18) = 2.62, p = .077, n,? = .04), and between group, base rate and contrast (F(1.97,
138.18) = 2.62, p = .077, np? = .04).

Reward experiment

The interaction between group and reward (F(1, 69) = 0.11, p =.738, 7,2<.01), group and
contrast (F(1.43, 98.42) = 0.07, p = .868, 7,?< .01), and the triple interaction (F(1.43, 98.43)
=0.07, p = .868, 7,%<.01), were not significant.

Confidence criterion
Prior experiment

The interaction between group and base rate (F(1, 70) = 0.10, p = .758, n,2< .01), group
and confidence (F(1.52, 106.47) = 0.22, p = .743, 1,?< .01), base rate and confidence
(F(1.62, 113.53) = 2.154, p = .130, 7%= .03), and the triple interaction (F(1.62, 113.53) =
2.53, p =.095, n,% = .04) were not significant.

Reward experiment

The interactions between group and reward (F(1, 67) = 0.95, p = .335, 7,?2=.01), group and
confidence (F(1.56, 104.32) = 0.47, p = .581, n,?<.01), reward and confidence (F(2, 134) =
2.10, p =.126, np? = .03), and the three-way interaction (F(2, 134) = 1.61, p = .203, 7,?=.02)
were not significant.

Guess rate
Prior experiment

The model integrated a measure of guess rate (g) to account for random reporting. The
ANOVA performed on g showed a main effect of group (F(1, 70) = 5.93, p =.017, 1,2 = .08),
with a higher g for the autistic group, #(50.8) = 2.32, p = .024. The main effect of base rate
(F(1,70) = 0.04, p = .850, 7,%2< .01), and the interaction between base rate and group (F(1,
70) = 0.33, p = .569, 1,2 < .01) were not significant.

Reward experiment

The ANOVA on g revealed that g was not significantly different across groups (F(1, 67) =
0.11, p=.746, n,?< .01 ) and reward (F(1, 67) = 1.27, p = .264, 1,?=.02), and the

41



interaction between group and reward was not significant (F(1, 67) = 0.43, p = .517, n,2<
.01).

Sensory uncertainty experiment

The unpaired t-test investigating the difference in g between groups was not significant
(t(55.81) = 0.84, p = .403).

Differences in meta-uncertainty within and between groups in the sensory
uncertainty experiment (Experiment 3), based on familiarity with the task

Supplementary Figure 5 illustrates meta-uncertainty in Experiment 3 (sensory uncertainty
manipulation) as a function of previous participation in other experiments and group. Six
autistic and 16 non-autistic participants did not participate in the prior or reward experiments
before completing the sensory uncertainty experiment. Sixteen autistic and 18 non-autistic
participants completed at least one experiment prior to the sensory uncertainty experiment.

The ANOVA performed on meta-uncertainty revealed no main effects of previous
participation (F(1, 52) = 0.03, p = .875, 1,2 < .01), nor interaction between previous
participation and group (F(1, 52) = 0.03, p = .854, 1,%2< .01) (see Supplementary Figure 5).
These results indicate that participants who completed Experiments 1 and 2 before
completing Experiment 3 do not exhibit different metacognitive abilities compared to
participants who performed the task for the first time. As most of the autistic participants—
compared to non-autistics—performed Experiments 1 and 2 before completing Experiment
3, these results indicate that enhanced metacognitive abilities in the autistic group cannot be
associated with training of confidence abilities. The main effect of group was not significant
(F(1, 52) = 2.35, p = .133, n,?=.05).
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Supplementary Figure 5. Meta-uncertainty in Experiment 3 (sensory
uncertainty manipulation) based on familiarity with the task. Meta-
uncertainty (y-axis) as a function of previous participation—whether
participants completed Experiments 1 or 2 (l.e., with) before participating in
Experiment 3—and group (bar colour). Bars show means across participants,
and error bars represent +SE. The sample size consisted of 22 autistic and
34 non-autistic participants.

Within-subject differences in meta-uncertainty across sensory uncertainty and
prior experiments

The main analyses of meta-uncertainty showed that non-autistic participants exhibited
consistent meta-uncertainty across experiments, whereas autistic participants demonstrated
lower meta-uncertainty (i.e., enhanced metacognition) when the first-order decision
integrated sensory uncertainty alone, and greater meta-uncertainty (i.e., reduced
metacognition) when prior information was integrated into the inference process. To test
whether this pattern appeared at an individual level, we examined how within-subject meta-
uncertainty varied between the two experiments for each group. The sample included
participants who completed both experiments (13 autistic and 12 non-autistic).
Supplementary Figure 6 illustrates meta-uncertainty in the sensory uncertainty experiment
as a function of meta-uncertainty in the prior experiment, per group. Meta-uncertainty values
in the prior experiment are averaged across base rate blocks for each participant.

Due to the small sample size, participants’ behaviour was examined qualitatively by
visualizing trends. Here, the trends aligned with the previous findings: the interaction
suggests a steeper relation between the meta-uncertainty values in the two experiments for
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the non-autistic group. In Supplementary Figure 6, the regression line for the non-autistic
group follows the y = x diagonal, indicating similar meta-uncertainty across experiments. For
the autistic group, the line falls below the diagonal, reflecting higher meta-uncertainty in the
prior compared to the sensory uncertainty experiment within the same participants. These
observations support our previous findings, indicating that, unlike non-autistic participants,
metacognitive performance in autistic participants depends on the first-order Bayesian
source of uncertainty.
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Supplementary Figure 6. Within-subject comparison of meta-uncertainty across
the prior and the sensory uncertainty experiments. Meta-uncertainty from the
sensory uncertainty experiment (y-axis) as a function of meta-uncertainty from the prior
experiment (x-axis) per group (dot and line colour). Each dot represents meta-
uncertainty values from both experiments for one participant. Regression lines
(coloured lines) were fitted per group using linear models, and shaded areas represent
the 95% confidence intervals around the regression lines. The sample size consisted of
13 autistic and 12 non-autistic participants

Meta-uncertainty analyses per group and block condition

Supplementary Figure 7 illustrates meta-uncertainty as a function of base rate/block
condition and group.

Prior experiment
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The ANOVA performed on the om revealed a main effect of group (F(1, 70) = 4.93, p = .030,
np? = .07), with the autistic group exhibiting a higher o, compared to the non-autistic group
(see Supplementary Figure 7). The main effect of base rate (F(1, 70) = 0.04, p = .848, n,2<
.01) and the interaction between base rate and group (F(1, 70) = 1.31, p = .256, 7,?=.02)
were not significant. Therefore, autistic individuals showed reduced metacognitive abilities

across prior conditions.
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Supplementary Figure 7. Analyses of meta-uncertainty per block condition. The
meta-uncertainty om (y-axis) as a function of block condition (x-axis) and group (bar
colour) for the (a) prior and (b) reward experiments. Bars show means across
participants, and error bars represent =SE. In (b), the main effect of reward was
evaluated using a mixed-design ANOVA. **.01 > p = .001. The sample size consisted of
30 autistic and 42 non-autistic participants (a) and 27 autistic and 42 non-autistic

participants (b).

Reward experiment

The ANOVA performed on om revealed no significant difference between groups (F(1, 67) =
0.10, p =.758, n,?< .01). The main effect of reward was significant (F(1, 67) = 8.48, p =
.005, np%2=.11), with a higher om when reward was unbalanced compared to balanced, and
the interaction between reward and group was not significant (F(1, 67) = 0.10, p = .758, 12 <
.01) (see Supplementary Figure 7b). Therefore, the autistic group exhibited similar
metacognitive abilities compared to the non-autistic group when reward information was
included in their perceptual decisions. Surprisingly, reward information influenced meta-
uncertainty, and this in a similar manner between the two groups.
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Supplementary Table

Supplementary Table 1. Result of the linear and quadratic mixed-effect models investigating
category report for each experiment. The table reports the degree of freedom (df), t-value (), and p-
value (p) for each predictor (main effects and interactions). Orientation? indicates the squared predictor.
The asterisks represent the significance levels, *p < .05, **p <.01, ***p < .001.

Prior experiment

Predictor df t p
Intercept 148.50 36.16 <.001***
Orientation 197.40 28.24 < .001***
Contrast 325.20 -1.42 .156
Group 149.30 -0.13 .898
Base rate 285.30 -0.25 .803
Orientation x Contrast 10520.00 -22.18 < .001***
Orientation x Group 197.90 0.79 433
Contrast x Group 325.70 1.33 .186
Orientation x Base rate 10510.00 -0.44 .661
Contrast x Base rate 286.20 1.07 .284
Group x Base rate 10520.00 0.26 .792
Orientation x Contrast x Group 10510.00 1.03 .301
Orientation x Contrast x Base rate 10510.00 3.25 .001**
Orientation x Group x Base rate 10510.00 -0.71 478
Contrast x Group x Base rate 10510.00 -0.78 434
Orientation * Contrast * Group * Base rate 10510.00 0.22 .823

Reward experiment

Predictor df t p
Intercept 144.00 37.72 <.001***
Orientation 225.70 30.85 < .001***
Contrast 139.70 0.35 725
Group 144.90 0.04 .969
Reward 1430.00 0.69 494
Orientation x Contrast 10170.00 -21.80 <.001**
Orientation x Group 226.80 -1.06 .289
Contrast x Group 141.10 -0.80 425
Orientation x Reward 10170.00 0.78 433
Contrast x Reward 10160.00 -0.89 .375
Group x Reward 1438.00 0.01 .990
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Orientation x Contrast x Group 10170.00 1.01 311
Orientation x Contrast x Reward 10170.00 -0.34 731
Orientation x Group x Reward 10170.00 -0.96 .339
Contrast x Group X Reward 10170.00 0.10 .920
Orientation x Contrast x Group x Reward 10170.00 1.01 .315
Sensory uncertainty experiment

Predictor df t p
Intercept 27.68 3.48 .002**
Orientation 177.40 -1.08 .281
Contrast 46.57 441 < .001***
Group 27.68 1.03 .313
Orientation? 114.00 25.79 < .001***
Orientation x Contrast 4528.00 0.29 776
Orientation x Group 177.40 2.62 .010**
Contrast x Group 46.56 -1.24 .222
Contrast x Orientation? 4528.00 -18.96 < .001***
Group x Orientation? 114.00 -1.60 12
Group x Orientation x Contrast 4528.00 -1.15 .250
Group x Orientation? x Contrast 4528.00 1.67 .096

Supplementary Table 2. Result of the quadratic mixed-effect models investigating confidence
report for each experiment. The table reports the degree of freedom (df), t-value (f), and p-value (p) for
each predictor (main effects and interactions). Orientation? indicates the squared predictor. The asterisks
represent the significance levels, *p < .05, **p <.01, ***p < .001.

Prior experiment

Predictor df t p
Intercept 47.69 12.02 <.001
Orientation 39660.00 -0.01 .996
Contrast 29.12 5.70 <.001***
Group 47.70 -1.54 .130
Base rate 59960.00 2.82 .005**
Orientation? 777.50 4.14 770
Orientation x Difficulty 59970.00 -0.97 .333
Orientation x Group 39170.00 -0.01 .999
Contrast x Group 28.17 -1.38 179
Orientation x Base rate 59970.00 0.72 470
Contrast x Base rate 59960.00 -1.58 114
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Group x Base rate 59960.00 -1.70 .090
Contrast x Orientation? 59960.00 6.91 <.001
Group x Orientation? 781.20 0.80 .872
Base rate x Orientation? 59960.00 -0.28 .783
Orientation x Contrast x Group 59970.00 3.00 .003**
Orientation x Contrast x Base rate 59970.00 0.85 .394
Orientation x Group x Base rate 59970.00 -0.35 727
Contrast x Group x Base rate 59960.00 1.21 .226
Contrast x Group x Orientation? 59960.00 1.22 .224
Contrast x Base rate x Orientation? 59960.00 0.03 .979
Group x Base rate x Orientation? 59970.00 1.28 .200
Orientation x Contrast x Group x Base 59970.00 -1.78 .075
rate

Orientation? x Contrast x Group x Base 59960.00 -0.13 .894
rate x

Reward experiment

Predictor df t p
Intercept 25.54 10.17 .398
Orientation 6440.00 -0.02 .981
Contrast 3.99 4.75 .009**
Group 25.54 -0.71 .763
Reward 54860.00 2.96 .003**
Orientation? 30.42 0.69 746
Orientation x Difficulty 54860.00 0.74 457
Orientation x Group 6369.00 0.02 .9088
Contrast x Group 3.90 -1.84 .139
Orientation x Reward 54830.00 2.67 .008**
Contrast x Reward 55090.00 0.32 .751
Group x Reward 54850.00 -0.84 402
Contrast x Orientation? 51110.00 5.52 .001x**
Group x Orientation? 30.41 -0.05 977
Reward x Orientation? 54880.00 -1.64 101
Orientation x Contrast x Group 54890.00 -0.41 .685
Orientation x Contrast x Reward 54850.00 -2.03 .042*
Orientation x Group x Reward 54840.00 -2.03 .043*
Contrast x Group x Reward 55070.00 -0.46 .646
Contrast x Group x Orientation? 55080.00 1.29 .198
Contrast x Reward x Orientation? 55200.00 2.53 .012*
Group x Reward x Orientation? 54880.00 0.05 .959
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Orientation x Contrast x Group x Reward 54850.00 1.84 .065
Orientation?x Contrast x Group x Reward 55190.00 -1.10 .269
Sensory uncertainty experiment

Predictor df t p
Intercept 15.42 11.84 <.001***
Orientation 22460.00 -0.01 .995
Contrast 5.01 5.65 .002**
Group 15.42 -0.10 .923
Orientation? 801.20 0.25 .941
Orientation x Contrast 98760.00 -0.74 .457
Orientation x Group 22610.00 0.01 .993
Contrast x Group 5.00 -1.73 .145
Contrast x Orientation? 98760.00 -1.54 125
Group x Orientation? 801.20 -0.01 .997
Group x Orientation x Contrast 98760.00 -0.14 .886
Group x Orientation? x Contrast 98770.00 2.99 .003**

49




